3、初步学会关心帮助同伴,增进爱同伴的情感。活动过程:1、韵律活动:找朋友,感受找到朋友的愉快。师:让我们跟着音乐一起唱起来动起来,去找一找自己的好朋友,和好朋友手拉手坐到位置上。2、组织幼儿看电视讨论怎么样交朋友。出示视频实录三段:(1)一个小朋友玩玩具时和好朋友争抢玩具。(2)喝水时,一个小朋友在推挤其他小朋友,抢着先喝。(3)小朋友有了困难他也不去帮忙。大家都不和他做好朋友。 问:为什么他找不到好朋友?怎么样做才能找到好朋友?(幼儿讨论)3、说说自己的好朋友。师:谁愿意告诉大家,你的好朋友是谁?为什么喜欢他们做你的好朋友?
2、在蚕宝宝的自身运动中了解蚕一生的变化。3、在体育活动中感受、体验运动的快乐。活动准备:布袋21只、彩色丝带若干、录音机、磁带、安排活动场地。活动过程:1、热身运动。师:小朋友们,让我们来活动活动!2、集中讨论:你们喜欢春天吗?为什么?3、集体找春天。边念儿歌边做动作。4、学习蚕爬。(1)教师讲解动作要领:师:“小腿缩一缩,屁股撅一撅,小手撑一撑,身体往前趴。”(2)幼儿集体练习。(3)个别示范。师:我发现,有一只蚕宝宝爬的特别棒!我们来看看他是怎么爬的!
我们的身体对于孩子们来说是既熟悉又神秘。大班幼儿的身体和心智发生了较大的变化。伴随着这种变化,幼儿有一种“我长大了”的自豪感。对“身体的秘密”的探索是幼儿对“长大”最直观的感知和体验。幼儿对“身体”的经验已经从小班的“指认、初步了解”等笼统认知,逐步分化,对身体各部位的特征和作用出现了深入地体验和发现的需求。同时,5——6岁幼儿不仅精力充沛,生长发育迅速,而且对自己身体的生长变化也特别感兴趣开始表现出前所未有的自信和初生牛犊不怕虎的探究精神。于是我们在进入《身体的秘密》这一主题活动中帮助幼儿科学认识自己身体的变化,引导幼儿在进一步认识自己身体的基础上,学会能够让我们保持身体健康的方法,养成良好的运动习惯以及生活习惯。同时孩子们通过探究自己身体的奥秘知道如何好好保护自己身体。
1、让幼儿了解各消化器官的功能和食物在人体内消化吸收过程2、学习简单的自我保护方法3、培养幼儿良好的饮食和卫生习惯活动准备: (1)电脑制作《小豆子的旅行》(或图片及小豆子旅行的故事录音)(2)健康知识卡片、消化图、自制健康行为棋活动过程:
一、 阅读来信和礼物券 1、(出示信封)今天早上,妈妈在信箱里发现了一封信,猜猜是谁写给我们的? 2、猜谜语:红眼睛,白皮袄/长耳朵,真灵巧/爱吃萝卜和青菜/走起路来跳呀跳 3、哟,是写给我们的呀!咦,会是谁给我们写的信呢? 4、引导幼儿观察信封右下角的兔奶奶:(老花眼镜、额头的皱纹等) 5、兔奶奶写信给我们,不知道有什么事,让我们一起看看,好吗? 6、师生一起读信(教师读信,引导幼儿看图) a、(蛋糕)这是什么呀?什么时候要吃蛋糕? B、原来,兔奶奶要生日了,她请我们去干什么?那你们谁想去?
活动目标:1、培养幼儿对音乐、乐曲的感受能力。2、通过活动,培养幼儿的创造力和想象力,让幼儿在音乐表现和创造中感受音乐活动的快乐。活动准备:多媒体课件若干活动过程:1、幼儿听音乐,根据音乐表演动作。2、节奏练习。A、教师弹钢琴,幼儿根据节拍拍声音。B、教师出示课件,请幼儿根据动物的队型和帽子拍出相应的节奏。
2、发展幼儿小肌肉及手眼协调的能力,培养幼儿剪贴技能。活动准备: 1、粘有唇形的纸板,剪刀(与幼儿人数相等)。 2、长条形画线的纸若干(背面巾有胶条)。 3、挂图两张,装垃圾的小盒四个。活动过程:一、教师引出课题 教师用优美简单的语言指出“露齿的微笑”真的很美。 二、讨论牙齿1、牙齿很重要,我们用它做什么? (吃饭、撕咬食物、咀嚼食物、帮助发音等)
活动过程: 一、 说一说:各种各样的筷子。师:今天我们每个小朋友都带来了一双筷子,下面我们把你的筷子介绍一下。幼1:我的筷子是爸爸从国外带回的。幼2:我的筷子是竹子做的。幼3:我的筷子上有“喜”字和“万事如意”。幼4:我的是象牙筷。幼5:我的筷子上有象斑马一样的花纹。师:你们观察真仔细,和旁边小朋友介绍介绍,你的筷子是什么样的?还有的小朋友没介绍呢。幼儿和旁边小朋友两两讲讲。师:我们把筷子轻轻放在桌上,不发出声音。我们带来的筷子是各种各样的。现在请小朋友把筷子和别的小朋友的放在一起,看看有什么不一样?你发现了什么?幼1:筷子有各种颜色,有红的,有黄的,有白色的,是五颜六色的。幼2:身上的花纹不一样。幼3:有的是用木头做的,有的是象牙筷。师:请幼儿把用木头做的举出来,木头做的比较普通,也多。有一种用特殊的材料不锈钢做的,叫“不锈钢筷”。老师也带来了一双筷子,用布袋装着,是用特殊金属材料做的,叫“银筷”,问:银还可以做什么?幼1:银可以做银戒指。幼2:银可以做挂件。幼……师:要是把筷子放到娃娃商店去卖,怎么放?出示10元、5元、2元的篮子。 老师的银筷放入10元篮子,还有的呢?幼1:象牙筷、不锈钢筷放入5元篮子。幼2:木筷、竹筷放入2元篮子。师:现在可以放入商店里卖了。
《我家是动物园》这个故事,让孩子们充满了惊喜和快乐,它能让孩子产生幽默与共鸣,并展开合理的联想。 “家”怎么会是动物园呢?这让孩子产生了好奇。而读完作品后,从作品中,他们感受到了人与人,人与动物之间的关系,并认识到各种不同生命和谐相处是一个美好并值得努力的理想。 二.结合生活,合理联想 孩子有自己的朋友,他们会为一件小事而吵架,会为朋友的一句话而委屈,会一起玩得很高兴,会和朋友说悄悄话……。 迁移作品经验,让孩子把朋友和动物形象展开联想,创设情境,把班级比作动物园,把熟悉的小朋友比作可爱的小动物,这对他们来说是一种需要的满足。 本次活动,需要引导孩子从朋友的外表,习惯,喜好等方面对朋友有一个综合形象的联想。与此同时,挖掘不同状态下朋友的不同特点,如:吵架的时候,一起玩的时候,哭的时候,笑的时候,分别象什么。这些经验都应该是孩子在这一年来,与朋友的相处中累积的感性经验和理性思考。 能体会朋友间的“幽默”形象的比喻,亮出自己观点,去欣赏、接纳别人的优点,理解、宽容别人的缺点,同时去帮助、支持他人有合作的意识。 三.班级的背景特点及价值追求 孩子们很快就要离开幼儿园,进入小学阶段的学习。孩子们非常珍视友谊:赠送礼物、保存着朋友的小名片……能让孩子在毕业的时候,感受到我们这个动物班级的欢乐,感受到每个小动物的可爱,从小在他们内心播洒友谊的种子,珍藏最初的友谊。将来无论走到哪里,在心中总会有“小动物”朋友陪伴着他。
2、感知色彩明暗的对比,激发幼儿对色彩的感受力,体验色彩与生活环境的关系; 3、发展幼儿观察力,想象力和口语表达能力。 活动准备: 1、幼儿已初步认识深色和浅色; 2、多媒体幻灯片夜景图; 3、幼儿作画工具(画纸、油画棒、无尖铅笔); 4、半成品几张(一张铺好浅色底色的关成品、一张在浅色底色上涂好的深色的半成品); 5、歌曲《萤火虫》磁带。 活动过程: 1、欣赏歌曲,引出课题。 幼儿欣赏歌曲《萤火虫》,小朋友你们知道歌曲里唱的是谁吗?萤火虫什么时候进来?(是晚上)。当夜幕降临,到处是一片漆黑的时候,小动物迷路的时候,萤火虫打着它的小灯笼把小动物们安全地送回了家。
方法点拨教师:有的同学叙述事实论据时,不突出重点和精华,不注意取舍,水分太多,有许多的叙述描写,有时还有详细的故事情节,文章几乎成了记叙文,使文章的论点无法得到充分的证明,这是写议论文的大忌。那么:议论文中的记叙有哪些特点?同学各抒己见。投影显示:1.议论中的记叙不是单纯的写人记事,记叙文字是为议论服务的,其目的是为作者所阐明的道理提供事实依据。所以,在记叙时要求简洁、概括,舍弃其中的细节,仅仅交代清楚事件或者人物的概貌即可,一般不在各种描写手段上下功夫,只要把能证明观点的那个部分、侧面交代清楚就行了。2.议论文中的记叙性文字不得超过总字数的1/3,否则视为文体不当。能力提升一、教师:了解了议论文中的记叙的特点,接下来我们看看今天的话题:“爱的奉献”,你想从哪个角度立论?有哪些素材?
活动内容:教师首先让学生回顾学过的三类事件,接着让学生抛掷一枚均匀的硬币,硬币落下后,会出现正面朝上、正面朝下两种情况,你认为正面朝上和正面朝下的可能性相同吗?(让学生体验数学来源于生活)。活动目的:使学生回顾学过的三类事件,并由掷硬币游戏培养学生猜测游戏结果的能力,并从中初步体会猜测事件可能性。让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。而且由此引出猜测是需通过大量的实验来验证。这就是我们本节课要来研究的问题(自然引出课题)。
这是本节课的重点。让同学们将∠aob对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,请同学们观察并思考:后折叠的二条折痕的交点在什么地方?这两条折痕与角的两边有什么位置关系?这两条折痕在数量上有什么关系?这时有的同学会说:“角的平分线上的点到角的两边的距离相等”.即得到了角平分线的性质定理的猜想。接着我会让同学们理论证明,并转化为符号语言,注意分清题设和结论。有的同学会用全等三角形的判定定理aas证明,从而证明了猜想得到了角平分线的性质定理。
问题1:你能证明“两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b. 问题2:你能证明“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
(2)依托各方力量,办好家长学校 学校要重视家长学校这块教育主阵地的建设。首先成立家长学校领导机构——家长委员会,做到定期召开家长委员会会议,通报学校工作计划及取得的成绩、听取家长委员会成员的合理化建议等。依托家长委员会,组织专题研讨,为家校沟通、亲子沟通提供平台。同时从家庭教育的视角,与家长们一起思考如何提高教育的有效性。 为加强教育的效果,一方面学校要求教师访问学生家庭,作好了解、协调工作,防微杜渐。另一方面,还要通过家长学校这种组织机构治标治本,对学生家长有针对、有系统、分层次地进行家庭教育的辅导,通过家长会、辅导讲座、交流会、家长信、校刊小报等多种途径和手段,帮助家长树立正确、新型的家庭教育观念,传授家长科学、合理的育人常识和技巧,提高家庭教育水平。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.