教学过程:一、引入首先我们来欣赏一幅油画,它的名字就叫《在中亚细亚草原上》(出示油画)。可能同学们会觉得它不论时间与空间上都离我们很远,那么我们有没有办法让它离欣赏者很近,甚至有身临其境的感觉呢?(提示学生可以从人的视觉与听觉入手)那我们就来给它配乐,在配乐之前我们必须对油画的内容有些了解(出示文字),根据文字提示我们想想它可能出现哪些音乐或声音?设计意图:从画面进入让学生对标题音乐(交响音画)的标题来源有暗示作用,为下节课对标题音乐的总结打下埋伏。二、分段欣赏接下来我们来看看作曲家是如何做的,欣赏以下片段音乐做出连线并说出共有几个主题?(初听)A俄国卫队 音乐1(主题1独奏)B商队渐渐远去 音乐2(对比复调)C安然无虑的当地商队 音乐3(主题2)(教师简单介绍英国管)D二者关系融洽 音乐4(主题1齐奏)E飘过来的俄国曲调 音乐5(主题1渐漫)(教师简单介绍单簧管)问:共有几个主题?1、为何ABE他们同为一主提而表现的音乐内涵却各不相同?(A与E是力度上的变化,而A与B是节奏与力度的变化。)2、你是从哪方面感受出C的安然无虑?(旋律与音色上,可以从英国管是地特定情景下才用的乐器入手进行引导。)3、二者关系融洽你是从哪听出来的呢?(从旋律的层次上,他们用的是对比复调,进行得非常和谐。)
教学过程:一、组织教学学生跟随着《军队进行曲》步入音乐教室,并伴随着音乐原地踏步,师生问好。(情景教学)二、导入(为新课铺垫)1、根据课前所放的《军队进行曲》,提问同学的步伐整齐是因为什么原因?(踩着音乐的节拍行进)2、说说《军队进行曲》的节拍是怎样的?(二拍子,强拍在第一拍上)3、伴随着音乐走进教室时,你听到音乐后的感受是什么?(节奏感强、雄壮有力、激昂)4、把刚才分析的《军队进行曲》的特点合在一起,就是进行曲的特点,导出进行曲。5、众多进行曲中,你所熟悉的进行曲都有哪些?(《中国人民解放军军歌》、《婚礼进行曲》、《葬礼进行曲》等)三、新授1、放一段带有阅兵式画面的录像,引出《中国人民解放军军歌》。2、学生介绍作者郑律成。3、欣赏《中国人民解放军军歌》。4、赏析《中国人民解放军军歌》。①欣赏此曲后的感受。(振奋人心)②欣赏后给你留下最深刻的是哪段音乐(最容易哼唱的部分)?(开头:向前、向前、向前!我们的队伍向太阳……)③分析开头的旋律:同音重复(只有一个音ⅰ组成),不加任何节奏的演唱和加入附点和切分节奏的演唱,比较二者的区别,感受加上附点和切分节奏后给人的感觉是什么?(具有号召性节奏铿锵,振奋人心)
准备:1.各色蜡光纸,糨糊,剪刀,托盘,抹布,铅笔等。2.累加组合剪纸作品一幅(见图1),其中一只蝴蝶的花纹可以分离并移动。3.背景音乐,“三只蝴蝶”背景图(图上有幼儿画的若干花朵)。4.欣赏剪花娘子库淑兰的剪纸作品,丰富有关经验。 过程:1.回忆已有经验,萌发活动兴趣。师:我们听过剪花娘子库淑兰奶奶的故事,也欣赏过库淑兰奶奶的剪纸作品,还记得是什么作品吗?库淑兰奶奶这幅作品是用什么方法做的?幼:梅香骑马。幼:用的是累加剪纸的方法。
活动准备:剪刀、纸片、胶水、用纸做成的城堡 活动目标:1、在折折、剪剪、贴贴中,引导幼儿理解纸片从平面到立体的变化。2、体验成功的喜悦。 活动过程:一、谈话导入师:(出示伤心手工纸娃娃)这个是谁呀?你们认识吗?其实他是一个手工纸娃娃,来,我们来看看这个手工娃娃怎么了?讨论:小纸片请你们帮它一个忙,什么忙呀?那你有什么好方法呢?教师小结:我们宝宝本领真大,想出了许多办法,那让我们一起去试一试吧.二、自由尝试1、桌上有纸、剪刀、固体胶,我们去试试吧。2、幼儿操作:要求:能用不一样的方法使纸片站起来。 师:你们都成功了吗?(出示笑脸手工纸娃娃)你是用什么办法的?请小朋友上来说说看。3、小结:原来,我们用折、剪、贴、卷的方法是能够让小纸片站起来的。
2、通过讨论,懂得遇事要善于观察,会从多方面不同角度地思考并发现事物的长处和短处。3、敢于大胆地表达自己的观点,逐步养成爱动脑的习惯。活动准备:1、幼儿用书人手一份。2、白纸人手一张,笔人手一套。>活动过程:一、 引导幼儿观察幼儿用书上的高房子和矮房子。1、画面上有什么?它们有什么不一样?2、你喜欢高房子还是矮房子?为什么?
2、懂得用不正确方法玩滑梯易造成伤害; 3、初步养成一定的安全意识。 活动准备: 1、小兔、小狗胸饰若干,照相机。 2、编排情境表演(大班的哥哥姐姐)。 活动过程: 1、导入活动,激发兴趣。 兔妈妈(老师扮):今天天气真好,小兔子们,妈妈带你们出去玩。看,那是谁?(小狗)他们在干什么?(滑滑梯) 2、观看情境表演,向幼儿介绍滑梯及其玩法。 (1)狗妈妈是怎样教小狗玩滑梯的?为什么要这样玩? (
活动准备:1、不同型号的电池若干; 2、钟表、手电、电动玩具、录音机、手机等; 3、记录单;活动进行: 1、老师介绍活动任务要求: * 第一个任务是;用老师准备的电池,让钟表走起来,让手电筒亮起来;让玩具动起来。 * 第二个任务是:在安装电池的过程中,让幼儿发现、观察、思考:电池上有什么小秘密?你是怎样安装电池的?找一找看安装电池有没有小窍门,好办法。 2、介绍记录单,鼓励幼儿把安装电池的方法,用自己的方式去记录。 提示:记录表上有个X,√?幼儿也可以自己画笑脸、哭脸等。 3、介绍活动一共分四桌,幼儿可以选择喜欢的物品去操作。 4、幼儿动手操作,老师观察、指导幼儿活动情况。指导重点:(1)电池上有什么标记?电池两头一样吗?你发现了什么小秘密?(2)安装时电池鼓的一端顶在哪儿?平的一端放在哪儿?(3)小钟表、手电筒、电动玩具等在安装电池的地方有什么标记?有没有和电池一样的标记?(4)你为什么选择这个电池?你知道你装的是几号电池吗?(5)幼儿的记录情况。 5、帮助幼儿总结归纳电池的一般常识和安装电池的一些方法。(1)老师检查幼儿第一项任务完成的情况:让钟表走起来,让手电筒亮起来;让玩具动起来。
3.继续培养幼儿遵守集体规则的良好品质。活动准备松紧带圈人手一个;录音机、磁带;彩色气球若干,并分两组挂在墙上。课前让幼儿了解松紧带圈的特性,知道它具有可变性,可以由短变长,由圆变长;利用其有弹性可以射出等等。活动过程:一、开始部分幼儿拿着松紧带圈自由进入场内,听到哨音后集合成4路纵队做松紧带圈操。
活动目标:1、学习5的加减法,进一步理解加法交换、加减互逆的关系。2、能用较完整地语言口编应用题,会正确书写加减法的算式,保持正确的书写姿势。3、能与同伴合作游戏,体验合作完成任务的乐趣。活动准备:1、提前告诉幼儿设立贝贝玩具超市,请幼儿和老师一起准备各种玩具。2、和幼儿一起创设贝贝玩具超市(共分为4块,并贴有不同的与每组幼儿身上颜色相同的即时贴),带有不同数字(圆点)的玩具40个,装玩具的小盒每组5个(上面贴有数字5)。3、供幼儿记录的记录卡40张(田字格)。4、每人一个信封,装有硬纸币5个。5、教师用的大展示板2张(田字格)。
2、探索有规律地排序,发展幼儿的观察力及动手操作能力。3、通过“玩夹子”游戏,激发幼儿对感知、分类、排序活动的兴趣,使幼儿能关注生活中的一些数学现象,感受其中的奥秘。活动准备:各种夹子若干、直尺若干、汽车卡人手一份(汽车卡分四种颜色,上面分别贴有4-10不等的数字)、场地上贴有四种颜色的汽车标记。小铃、教师用数字卡一套。活动过程:一、观察夹子,说说夹子的不同特征。二、玩夹夹子游戏,正确感知10以内的数量,理解数的实际意义。1、看数字,夹夹子。教师任意出示一个10以内的数,幼儿按数在直尺上夹夹子。2、听铃声,夹夹子。① 教师任意敲铃,铃声数在10以内,幼儿按铃声数夹夹子。② 教师任意敲铃,让幼儿夹比铃声次数多1的夹子。
方法点拨教师:有的同学叙述事实论据时,不突出重点和精华,不注意取舍,水分太多,有许多的叙述描写,有时还有详细的故事情节,文章几乎成了记叙文,使文章的论点无法得到充分的证明,这是写议论文的大忌。那么:议论文中的记叙有哪些特点?同学各抒己见。投影显示:1.议论中的记叙不是单纯的写人记事,记叙文字是为议论服务的,其目的是为作者所阐明的道理提供事实依据。所以,在记叙时要求简洁、概括,舍弃其中的细节,仅仅交代清楚事件或者人物的概貌即可,一般不在各种描写手段上下功夫,只要把能证明观点的那个部分、侧面交代清楚就行了。2.议论文中的记叙性文字不得超过总字数的1/3,否则视为文体不当。能力提升一、教师:了解了议论文中的记叙的特点,接下来我们看看今天的话题:“爱的奉献”,你想从哪个角度立论?有哪些素材?
①演示动画,理解大爆炸宇宙论②主要观点:? 大约150亿年前,我们所处的宇宙全部以粒子的形式、极高的温度、极大的密度,被挤压在一个“原始火球”中。? 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。2、其它宇宙形成理¬——稳定理论3、大胆猜测:宇宙的将来史蒂芬·霍金是英国物理学家,他提出的黑洞理论和宇宙无边界的设想成了现代宇宙学的重要基石。霍金的宇宙无边界的设想是这样的:第一,宇宙是无边的。第二,宇宙不是一个可以任意赋予初始条件或边界的一般系统。霍金预言宇宙有两种结局:永远膨胀下去,不断地扩大,我们将看到所有星系的星球老化、死亡,剩下我们孤零零的,在一片黑暗当中。或者会塌缩而在大挤压处终结科学巨人霍金:探索的精神)
(三)、历史的必然:人民代表大会制度的确立1、《中国人民政治协商会议共同纲领》作为临时宪法规定我国根本政治制度是人民代表大会制度。新中国的成立,标志着亿万中国人民真正成为国家、社会和自己命运的主人。此前召开的中国人民政治协商会议第一届全体会议,为建立新型国家政权发挥了重大作用,会议通过的《中国人民政治协商会议共同纲领》具有临时宪法的地位,为全国人民代表大会制度的建立奠定了法律基础。共同纲领规定:中华人民共和国的国家政权属于人民,人民行使国家权力的机关为各级人民代表大会和各级人民政府。2、人民代表大会制度在我国正式建立起来的标志:1954年9月15日,第一届全国人民代表大会第一次会议在北京召开,会议通过了《中华人民共和国宪法》,标志着人民代表大会制度在我国正式建立起来。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.