
教学质量是学校的生命线,咱们的老师们都有很强的质量意识,特别是这次教育局组织的六年统考、四年抽考。应该说六年和四年级的八位教师不计个人得失,每天起早贪晚的倾情付出让学校领导感动,让每一位教师佩服。更让人感动的是李丽杰、邹玉红老师忍受着嗓子痛不能说话和嗓子哑说不出话的痛苦依然坚持工作。本学期,我们还成功地举办了数学的“同课异构”和语文的“模课”活动。活动中涌现出了像赵淑萍、江式杰等优秀教师。

仔细思考下列问题。1.在故事情节发展中起着关键作用的语句是哪一句?为什么骗术能步步行通?(1)“任何不称职的或者愚蠢得不可救药的人,都看不见这衣服”这句话在故事情节发展中起着关键作用。(2)骗子胡说那件衣服具有一种“奇怪的特性”,不但抓住了皇帝的昏庸无能而又想辨别出官员是否称职、是聪明还是愚蠢的心理,而且抓住了大臣们只想保住官位而阿谀奉承的心理,因而骗术步步行通。2.在根本不存在的“新装”面前,从皇帝到老百姓都不敢说自己根本看不见它,这是为什么?因为骗子说“任何不称职的或者愚蠢得不可救药的人,都看不见这衣服”,大臣们怕人说自己不称职,百姓怕人说自己愚蠢,皇帝既怕被人说不称职,又怕给人说愚蠢,所以都不敢说真话了。3.后来,一个小孩子最先说出了真话,紧接着老百姓也都说真话了,而皇帝和他的内臣们仍装模作样地把戏演下去。作者这样写,你是怎样理解的?

三、班会重点: 通过对逆行之人的了解,同学们产生共情,思考“逆行之人”的人生观、世界观和价值观; 激发学生的感恩之心和爱国之情,思考我们可以做些什么。 四、课前准备: 1.教师:班级教案、课件、新闻、图片 2.学生:搜索在本次疫情中履行和未履行公民责任的民众新闻,并思考自己作为一名小学生,可以在本次疫情中肩负起哪些责任? 五、活动流程:

学习方法实验法、讨论法。教学 媒体投影仪、投影片、岩石标本、实验器具。学习过程一、地球的早期演化和地质年代1、思考回答:初生地球 有什么特点?2、【启发提问】看课本大气的早期是怎样演化的?水圈是怎样形成? 学生分组讨论后回答,相互启发补充。3、学生讨论、回答:生命起源的过程怎样?大气又是怎样继续演化的?二、记录地球历史 的“书页 ”——岩层和化石1、学生讨论 、回答:地球上岩浆岩、变质岩、沉积岩三种岩石的形成和特点2 5、【启发提问】化石是怎样形成的?他有什么作用?三、地质年代1、【启发提问】地质年代划分依据是什么?2、学生讨论、总结。各阶段的特点?学后记:

活动准备:材料准备——故事录音、PPT知识经验准备——幼儿对自然界中的各种现象有一定的认知基础。重点难点:活动重、难点——了解水的三态及变化需要的条件。 一、说说生活中的水1、说说生活中哪些地方有水,水的作用是什么。2、提升:美容院用水蒸汽扩张毛孔;制造气氛桑拿院用水蒸汽帮助减肥;舞台上用水制成的干冰……水的用处真正大。3、说说“水魔法师”能变成哪些样子。4、介绍故事名称,引导幼儿仔细聆听。

⒉教幼儿学习,掌握正确的刷牙方法,养成每天早晚刷牙的好习惯。教学重点:知道保护牙齿的重要性,学习刷牙的方法。教学难点:掌握正确的刷牙方法。教学准备:⒈听过故事《小熊拔牙》;⒉小熊头饰一个,并请一位老师扮演小熊;⒊牙齿模型一副;幼儿人手一把牙刷,一支牙膏,一只杯子;⒋录音机,磁带《刷牙歌》。

二、准备:1、毛巾、海绵、布、毛线、目条、石头、铁板等。2、塑料盆、水;红、绿色水;玻璃管(内塞纸巾)。 三、过程:1、游戏《帮水搬家》(1)小朋友看这里有什么?(脸盆和水) 今天李老师请你们玩一个游戏,叫做《帮水搬家》,请你们两个一组合作着把红脸盆里的水搬到篮脸盆里去,但是不能直接拿起脸盆把水倒过去,请你们去选择箩筐里的一样东西帮帮忙,把水搬搬家。注意别把水洒在地上了(2)幼儿选择材料帮水搬家,教师观察并指导,提醒幼儿卫生。(3)提问:刚才你是怎么帮水搬家的呢?为什么这些东西能帮水搬家呢?现在我们再来帮水搬家,这次请你选择刚才没有用到的东西去帮水从蓝脸盆搬到红脸盆去,请你想想第一次搬和第二次搬哪次快?为什么?(4)幼儿再次游戏(5)提问:这次帮水搬家和上次帮水搬家你用的什么材料,有什么不一样?为什么?(海绵吸的水多,布吸的少。)小结:原来,海绵毛巾,布这些东西放到另外一个脸盆上拧一下就帮水搬了家。

老师、同学们:同学们,今日的习惯,决定明天的你们。因此,在今天的学习生活中,同学们一定要养成一些好的习惯,比如:习惯于主动打扫卫生,形成热爱劳动的习惯;习惯于说声“谢谢”、“你好”、“对不起”,形成以礼待人的好习惯;习惯于每天坚持锻炼,形成健美的体魄;同学交往中习惯于理解、宽容,便能化干戈为玉帛;习惯于去用心观察,才能形成好的观察能力;习惯于提前预习,课后复习,才能形成高效的学习方法……法国学者培根说过,“习惯是人生的主宰,人们应该努力追求好习惯。”是的,行为习惯就像我们身上的指南针,指引着我们的行动。爱因斯坦有句名言,“一个人取得的成绩往往取决于性格上的伟大。”而构成性格的,正是日常生活中的一个个好习惯。好习惯养成得越多,个人的能力就越强。养成好的习惯,就如同为梦想插上了翅膀,它将为人生的成功打下坚定的基石。小时候的 鲁迅 先生,就养成了不迟到的习惯,他要求自己抓紧时间,时刻叮嘱自己凡事都要早做。这位以“小跑走完一生”的作家,在中国文学史上留下了辉煌的业绩。可见,行为习惯对一个人各方面的素质起了决定性的作用。

篇一尊敬的老师、亲爱的同学们:大家早上好。春回大地煦风暖,XX年,当春天的阳光再一次普照在西南科大文艺学院这片热土时,我们憧憬万分,我们心潮澎湃。前几日冬奥会顺利闭幕,中国获第七名的成绩,这是中国在冬奥会的历史突破,一霎那我们就感觉到身为年轻一代,我们肩负着任重道远的历史使命和社会责任。新学期开始,我们更要以全新的状态类迎接新一轮的挑战。各位同学们,西南科技大学文艺学院是一片沃土,提供给我们成长的条件,西南科大文艺学院也是值得我们骄傲的舞台,给我们展示才华的机会。文艺学院又是一片大海,让我们扬帆远航。莎士比亚说:“上天生下我们,是要把我们当做火,不是照亮自己,而是普照世界。”作为西南科大的学生,我们应当在新学期争当五个方面的模范:做身体心理健康的模范,做思想道德高尚的模范,做掌握科学文化素养的模范,做有劳动技能的模范,做有艺术审美修养的模范。而这五种模范正是素质教育要求的五个综合素质。作为西南科技大学的学生就是应该有高要求,高素质。恩格斯讲过:“人生境界是有所作为”,那么时值新学期刚刚开学,各位同学应该重新审视自己的行为,看看自己做的怎么样,是否有自己的学习计划,是否完成了老师交给的任务,是否合理安排每天的学习生活,我们应该争做这5个模范。我们不会畏惧严峻学习任务的挑战,因为海涅曾说过:“严冬劫掠去的一切,新春会给你还来。”

各位老师、亲爱的同学们:早上好!今天我国旗下讲话的主题是《爱国,从唱响国歌开始》。当我们每一次面对庄严的五星红旗,向国旗行注目礼,共同唱响国歌时,你是否心潮澎湃,是否热血沸腾。你的眼前是否出现了那一个个为了新中国,为了这个不愿做奴隶的伟大民族不再受屈辱而前仆后继、奋勇杀敌的烈士的身影,国旗记下了这一个又一个感人的瞬间,国歌讲述着在那片被血染红的天空下发生的动人故事。在漫漫历史长河中,千千万万的中华儿女深爱着自己的祖国,他们把个人的命运同祖国的命运紧紧联系在一起,把祖国的利益看得高于一切,甚至为祖国献出了自己宝贵的生命。也许有同学会说,现在是和平年代,并不需要我们去为国捐躯,爱国似乎对我们小学生来说很遥远。其实,我要说,爱国并不是说非要做出什么轰轰烈烈、惊天动地的大事。对我们每位小学生来说,爱国可以是具体的、细小的体现。小到每一次升旗仪式时的高唱国歌。当鲜艳的五星红旗在国歌声中冉冉升起的时候,你肃立的姿势、高举的小手、肃穆的表情、响亮的歌声就是爱国的最好体现。

各位老师、同学们:大家早上好!走过炎热的夏天,度过愉快的暑假,我们又满怀激动的心情迎来了新的学年。新的学年,我们迎来了23名新教师和1000余名七年级新生,他们的到来进一步壮大了我们的队伍,为学校的进一步发展提供了新鲜的血液和强大的动力,为此让我们以热烈的掌声对他们的到来表示热烈的欢迎!过去的一个学年,我们全校师生戮力同心,奋力拼搏,锐意进取,改革创新,在学校管理、教育教学、校园文化建设等方面取得了可喜的成绩,特别是我校利用暑期对教学区的楼宇进行了加固改造,改善了办学条件,让校园变得更美丽、更安全。这些成绩的取得,凝聚着每位教职员工的辛勤耕耘和无私奉献,汇聚着全体同学的勤奋好学和自强不息。在此,我代表学校向一学年来兢兢业业、努力工作、勤奋学习的老师和同学们表示衷心的感谢!老师们,因为有缘,我们相聚实中;因为有份,我们奉献实中。新的学年里,让我们自觉学习现代教育理论,积极投身教学改革,提高教学效率;继续发扬爱生敬业、甘于奉献的优良作风,静心教书,潜心育人,以纯洁的心灵塑造学生的灵魂,以健康的人格魅力带动学生的品格养成,营造我校和谐健康,洋溢着人文色彩的人际氛围,努力实践教育促进人的发展的崇高目标。

2、通过“送图形宝宝回家”的游戏,根据图形的三个特征进行分类。 3、积极参与数学游戏,体验数学游戏的乐趣。 活动准备: 1、教具:大骰子三个,贴好标记。 2、学具: (1)各种图形若干。 (2)贴有标记的小骰子人手三个,各种图形每组一份,人手一只小箩筐。 (3)贴有三个标记的大箩筐若干,连成一列火车。 活动过程: 一、来了一群图形宝宝,看有哪些图形宝宝?复习学过的图形。 教师在黑板上出示各种图形,请幼儿集体或个别回答,说出图形的名称和特征。 如:红颜色的三角形;黄色的正方形等等。要求幼儿能说出图形的特征。 二、帮图形宝宝找朋友。按三个特特征选择图形。 师:图形宝宝要去旅游,想请我们帮她们找朋友。怎么找呢?老师给小朋友准备了三个骰子,我们可以请骰子来帮忙。

一、导入: 1、听音乐,将幼儿带入活动场地放音乐《蜗牛与黄鹂鸟》,幼儿随着音乐入场,跟教师愉快的做运动,活动身体。 2、玩游戏:"小手小脚",小手小手拍拍,我的小手举起来。小手小手拍拍,我的小手抱起来。小手小手拍拍,我的小手转起来。小手小手拍拍,小手小手藏起来。小脚小脚踏踏,我的小脚踮起来。小脚小脚踏踏,小脚小脚踢起来。小脚小脚踏踏,小脚小脚转起来。小脚小脚踏踏,小脚小脚跳起来。

问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。