今天我说课的内容是人教版一年级数学下册第三单元《分类与整理》。我打算从说教学内容、说教学目标、说教学重难点、说教具准备、说教法学法和说教学过程等方面进行说课。一、 说教学内容一年级数学下册第三单元《分类与整理》要求学生在分类的基础上用自己的方式呈现整理的结果,但又不是正式的学习统计图和统计表,它是为以后学习统计图和统计表打下基础。二、 说教学目标一年级的心理特点和有具体到抽象的认知规律,我确定以下的教学目标:1.使同学能按照给定的标准或自己选定的标准对事物进行分类;能对分类结果进行整理,能够用自己的方式(文字、图画、表格等)呈现分类的结果;能对数据进行简单的分析,能根据数据提出并回答简单的问题。2.在小组交流合作中学习,经历收集信息、分类、统计的过程,体会对同一事物按单一标准分类的一致性。三、说教学重难点根据教材的编排和学生年龄特点,我认为本节课的重点是按单一标准对事物进行分类,本节课的难点是对分类结果进行整理,完成简单的统计活动,也就是能根据结果提出问题,回答问题。针对本节课的重难点,我设计的突破方法是首先通过把黑板上图形摆放整齐,让学生体会分类的意义和作用,然后创设情境,让学生在讨论合作交流中体会按单一标准对事物进行分类得到结果的一致性,最后对分类结果进行整理,完成统计活动。
【设计意图】新课前让学生对小数加减和整数加减混合运算的关系进行猜想,既抓住了本课的重点,同时很自然地让学生去体会知识之间的联系。(二)创设情境,发现问题出示情境图,师:从图中你获得哪些信息?你能提出什么问题?然后学生提问(对于学生提出的每个问题,教师作出适当评论。) 教师板书:一共花了多少钱?【设计意图】以学生自主探索为主,让学生在探索过程中发现规律,培养学生的归纳概括能力。(三)合作探究,解决问题解决第一个问题:一共花了多少钱? 教师提出要求:用两种方法解答。小组讨论,讨论后学生尝试独立在练习本上完成。 教师巡视,个别指导。(5分钟)【设计意图】充分体现教为主导、学为主体的原则。(四)展示交流,内化提升1、待大部分学生完成后,请两名学生把自己的解答板演到黑板上。组织学生评价:(1)教师概括:这两种解答方法的意义不相同,第一种解法是用脱式计算。第二种解法是用竖式计算少。
1. 知识与技能 通过学生活动,帮助学生理解三角形按角分类的方法,掌握直角三角形、锐角三角形、钝角三角形的概念;知道等腰三角形、等边三角形。培养学生观察,动手操作和抽象概括的能力;发展空间观念。2.过程与方法 使学生经历观察、操作、比较、概括等过程,在分类中体会每一类三角形角的特点;发现边的特点。渗透集合思想。3.情感态度与价值观 激发学生的主动参与意识,使学生感受到成功的喜悦,更增强学习兴趣。【教学重点】 直角三角形、锐角三角形、钝角三角形的概念。【教学难点】发现三角形角的特点。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体【课时安排】 1课时【教学过程】(一)复习导入 师:说一说下面的角各是什么角。
2.过程与方法 通过研究三角形、四边形的内角和,让学生经历观察、思考、推理、归纳的过程,渗透猜想--验证--结论--运用的学习方法,培养学生动手操作和合作交流的能力,增强学生的主体探究意识。3.情感态度与价值观 培养学生自主学习、积极探索的好习惯,激发学生学习数学、应用数学的兴趣,体验学习数学的快乐。【教学重点】 引导学生发现三角形内角和是180°,并能应用这一知识解决一些简单问题;通过量、拼、算等探究活动,使学生了解任意四边形的内角和都是3600 。【教学难点】 用不同方法验证三角形的内角和是180°;引导学生利用转化的方法把四边形或多边形转化成三角形,发现多边形的边数与内角和之间的关系。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、不同类型的三角形各一个、量角器。
(一)复习导入 师:什么是体积?生:物体所占空间的大小是物体的体积。师:怎样求长方体和正方体的体积?生:长方体的体积=底面积×高 正方体的体积=底面积×高师:圆的面积计算公式是怎样推导出来的?课件出示:生:把圆转化成长方形,长方形的长等于圆柱底面周长的一半,宽等于半径,所以圆的面积:S = πr2猜测:把圆柱转化成什么立体图形来推导圆柱的体积公式呢?呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
2.过程与方法 通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。3.情感态度与价值观 (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 【教学重点】 理解、掌握“三角形任意两边之和大于第三边”的性质;理解两点间的距离的含义。【教学难点】 引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、学具袋【课时安排】 1课时【教学过程】(一)复习导入 师:什么样的图形叫三角形?生交流:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
一、 教材分析“三角形的特性”是人教版小学数学四年级下册第五章第一节的内容,本节课主要阐述了三个方面,一是三角形的定义,二是三角形高和底的定义 。是学生在学习了线段、角基础上进行教学的,为进一步学习三角形的分类和内角和打下坚定的基础。二、 学情分析对于学情的合理把握是上好一堂课的基础。本节课的授课对象为四年级的学生,他们的观察、记忆、想象能力在迅速的发展,有强烈的好奇心。所以在教学过程中应该更多的激发他们的学习兴趣和情感动力,引导他们多观察,多想象。 三、 教学目标根据新课程标准、教材特点、学生实际,我确定了如下教学目标:(1)知识与技能目标:让学生初步理解并掌握三角形的特性及三角形高和底的含义,能准确作出三角形的高 。(2)过程与方法目标:经历猜测、观察、操作等教学活动,培养学生相互转化、渗透、迁移的数学思想方法。(3)情感态度与价值观目标:让学生积极参与数学学习活动,对数学有好奇心和求知欲。
三、说教材的重点和难点教学重点是:通过观察、讨论,让学生探究发现三角形的不同分类方法,从而进一步掌握三角形的特征。教学难点是:通过实践操作,让学生理解掌握等腰三角形和等边三角形的基本特征及其关系。四、说教学理念1、波利亚说:“学习任何知识的最佳途经都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的规律、性质和内在联系”。学生的学习过程是一个主动建构知识的过程,教师要激活学生先前的知识经验,创设具体情境,让学生在经历、体验、探索中真正感悟。2、体现学生的主体作用,把握好教师的主导地位,让学生在活动中体验,在体验中学习、在学习中感悟。 3、突出体现教学的16字原则:主体探究、创境激趣、合作互动、创新发展。 五、说教法1、运用操作法,确定每个三角形的三个内角各是什么角。 2、通过比较法,得出各个三角形的异同。3、采用探究法,找出等腰三角形和等边三角形的联系。 4、通过游戏与练习内化新知。
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】 逆用幂的乘方结合方程思想求值已知221=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,则21=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m,n都是正整数).2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则
【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式an·bn=(ab)n要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键.三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积.即(ab)n=anbn(n是正整数).2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:an·bn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数)
过程与方法:通过阅读保护听力的资料,了解我们的听力经常受到哪些伤害,知道保护听力的做法。情感、态度、价值观:认识到保护听力的重要性,养成良好的用耳习惯和在公共场所保持肃静的习惯。教学重点认识到保护听力的重要性教学难点知道各种控制噪音的方法教学准备发音罐、报纸、毛巾、棉花等
一、说教材(一) 教材内容分析1、地位作用本节内容在人教版小学数学一年级下册第二单元。本单元内容是在第一册集中教学20以内的进位加法的基础上,集中教学20以内的退位减法,“十几减9”是20以内退位减法教学的第一课时,第二课时是“十几减几”,它是在学生学习10以内加减法、20以内的进位加法的基础上进行的教学,它既是为学生学习退位减法铺路,也为学生学习四则计算奠定基础。2、教材分析20以内退位减法在本册尤为重要,对进一步学习多位数计算和其他数学知识非常重要,必须在理解算理的基础之上学会计算方法。在已学过的仅为加法和10以内的减法的基础上展开,巩固20以内的进位加法,进一步渗透加减法之间的互逆关系。让学生结合情境图解理解题意,进行计算等等,解决现实问题。引导学生从不同角度观察,通过操作后的讨论,用不同的思路思考,引出“想加算减”和“破十法”两种比较方便的计算方法。使学生在理解掌握“想加算减”的计算方法同时,还要理解“破十法”,并引导学生学会选择适合自己的计算方法,体现算法的多样化。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.3 一元二次不等式教 学 目 标知识目标:1、理解一元二次不等式和一元二次方程以及二次函数之间的关系 2、理解一元二次不等式的解集的含义 3、一元二次不等式的解集与二次函数图像的对应 技能目标:1、会解一元二次方程 2、会画二次函数的图像 3、能结合图像写出一元二次不等式的解集 情感目标:体会知识之间的相互关联性,体会数形结合思想的重要性教学 重点 和 难点重点: 1、一元二次不等式的解集的含义 2、一元二次不等式与二次函数的关系 难点: 1、将一元二次不等式和一元二次方程以及二次函数联系起来 2、在函数图像上正确的找到解集对应的部分教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.3课后记本节课内容是比较重要的,是一元二次方程、一元二次函数、一元二次不等式的结合,相关知识点融会贯通,数形结合的思想方法在这有很好的运用。三种情况只要讲清楚一种,另外两种可由学生自行推出结论。
【教学目标】1、了解方程、不等式、函数的图像之间的联系;2、掌握一元二次不等式的图像解法;【教学重点】1、 方程、不等式、函数的图像之间的联系;2、 一元二次不等式的解法。【教学难点】 一元二次不等式的解法。【教学设计】 1、从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;2、类比观察一元二次函数图像,得到一元二次不等式的图像解法;3、加强知识的巩固与练习,培养学生的数学思维能力。【课时安排】 2课时(90分钟)【教学过程】一、一元二次不等式的解法² 复习回顾1、根据初中所学知识,填写下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的图像ax²+bx+c=0 (a>0)的根有 2 个根有 1 个根有 0 个根2、观察二次函数y=x²-5x+6的图像,回答下列问题:(1)当y=0时,x取什么值?(2)二次函数y=x²-5x+6的图像与x轴交点的坐标是什么?(3)当y<0时,x的取值范围是什么?总结:由此看到,通过对函数y=x²-5x+6的图像的研究,可以求出不等式x²-5x+6>0与x²-5x+6<0的解集
1.举例说明什么时候用普查的方式获得数据较好,什么时候用抽样调查的方式获得数据较好?2、下列调查中分别采用了那些调查方式?⑴为了了解你们班同学的身高,对全班同学进行调查.⑵为了了解你们学校学生对新教材的喜好情况,对所有学号是5的倍数的同学进行调查。3、说明在以下问题中,总体、个体、样本各指什么?⑴为了考察一个学校的学生参加课外体育活动的情况,调查了其中20名学生每天参加课外体育活动的时间.⑵为了了解一批电池的寿命,从中抽取10只进行实验。⑶为了考察某公园一年中每天进园的人数,在其中的30天里对进园的人数进行了统计。通过本节课的学习,同学们有什么收获和疑问?1、基本概念:⑴.调查、普查、抽样调查.⑵.总体、个体、样本.2、何时采用普查、何时采用抽样调查,各有什么优缺点?
四、范例学习、理解领会例2 某校墙边有甲、乙两根木杆。已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图5-6所示,你能画出此时乙木杆的影子吗?(用线段表示影子)(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?学生画图、 实验、观察、探索。五、随堂练习课本随堂练习 学生观察、画图、合作交流。六、课堂总结本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不 同时刻影子的方向和大小变化特征。在同一时刻,物体的影子与它们的高度成比 例.
学习目标:1、知识与技能(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。3、情感、态度与价值观通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。学习重点:探索实际问题中蕴涵的关系和规律。学习难点:用字母、运算符号表示一般规律。学习过程:一、创景引入活动:出示一张月历,学生任意选出3×3方格框出的9个数,并计算出这9个数的和,告诉老师,老师就可以说出你所选的是哪9个数。
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.