方法点拨教师:有的同学叙述事实论据时,不突出重点和精华,不注意取舍,水分太多,有许多的叙述描写,有时还有详细的故事情节,文章几乎成了记叙文,使文章的论点无法得到充分的证明,这是写议论文的大忌。那么:议论文中的记叙有哪些特点?同学各抒己见。投影显示:1.议论中的记叙不是单纯的写人记事,记叙文字是为议论服务的,其目的是为作者所阐明的道理提供事实依据。所以,在记叙时要求简洁、概括,舍弃其中的细节,仅仅交代清楚事件或者人物的概貌即可,一般不在各种描写手段上下功夫,只要把能证明观点的那个部分、侧面交代清楚就行了。2.议论文中的记叙性文字不得超过总字数的1/3,否则视为文体不当。能力提升一、教师:了解了议论文中的记叙的特点,接下来我们看看今天的话题:“爱的奉献”,你想从哪个角度立论?有哪些素材?
2、寻找教室里的不安全因素,并贴上标记提醒同伴。 活动准备: 1、小朋友户外活动的图片 2、红色标记 活动过程: 1、出示幼儿户外活动时的图片 提问:图上有谁?他们在玩什么?你觉得他们这样玩好吗?也许会发生什么事? (会摔跤、会打痛、会从玩具架上掉下来等等) 那你觉得应该怎么玩,小朋友才不会发生这样的事呢?(引导幼儿大胆交流)
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
国旗下的讲话稿从小爱科学当你们看着可爱的动画片,玩着迷人的电脑游戏,坐上快速的列车,接听着移动电话的时候,……你可曾意识到科学的力量,科学不仅改变了这个世界,也改变了我们的生活,科学就在我们身边。翻开20世纪的壮丽篇章,我们发现人类在这百年中不仅经历了血与火的洗礼,更创造了无数科学奇迹。19世纪法国著名科幻小说家凡尔纳的虚构,当时让人不可思议,他所幻想的登月旅行、飞机、远射程炮等,在20世纪都一一成为现实。在21世纪的今天,高科技更是无处不在。作为跨世纪的一代,我们又该以怎样的姿态去适应新世纪,担起新世纪的重担呢?科学技术的日新月异,使得科学不只为尖端技术服务,也越来越多地渗透到我们的日常生活之中,这就需要正处于青少年时代的我们热爱科学,学习科学。参加科技小组,阅读科技书籍,会使我们明白了许多道理。太阳能路灯,虚拟的电脑游戏,高科技信息的传送等等,一个个生动有趣的现象,是否激起了你探索科学的愿望。
8、文化传播的含义:文化交流的过程,就是文化传播的过程。 人们通过一定的方式传递知识、信息、观念、情感和信仰,以及与此相关的所有社会交往活动,都可视为文化传播。9、文化传播的途径(1)商业活动。商人进行贸易活动时,不仅通过商品交换将商品中蕴涵的丰富文化加以交流,而且通过人与人之间的交往过程交流文化。(2)人口迁徙。每一次大规模的人口迁徙,都意味着大规模的文化传播,都会对当时当地的经济、政治、文化产生极大的影响。(3)教育教育是文化传播的又一重要途径。人们通过学习各种文化课程,能够获得不同的文化知识。文化传播是教育的重要功能。10、大众传媒:现代文化传播的手段现代社会中的传媒有报刊、广播、电视、网络等多种形式,这类传媒被称为大众传媒。依托现代信息技术,大众传媒能够最大程度地超越时空的局限,汇集来自世界各地的信息,日益显示出文化传递、沟通、共享的强大功能,已成为文化传播的主要手段。
◇探究提示:我们可以通过人际交往,阅读报纸、杂志、书籍等,欣赏电视、上网查询、发送手机短信、阅读电子读物等方式来搜集资料。其特点为:人际传播是社会生活中最直观、最常见、最丰富的传播现象,具有传播渠道多、方法灵活、意义丰富、反馈及时的特点。报纸、杂志、书籍等,可以通过扫描、编排处理后,显示在互联网上,供广大读者使用。电视提供了动态画面和缤纷的色彩,使人们对信息的理解变得更生动、形象和真实。互联网具有传播同网、全球同时、受众主动、双向互动的特点。手机短信用精练的语言传达丰富多彩的内容,不仅具有娱乐性,还具有情感性、艺术性耙哲理性,让人回味无穷。电子读物实现了文字、图像、声音的完关结合,使人在看图阅文的同时可以听音乐、写文章、做笔记、复制文件等等。
创设情境,导入新课:你对母亲知多少师问1:我们5月份刚过了一个重要的节日,你知道是什么吗?----母亲节。师问2:那你知道妈妈的生日吗?(举手示意),每个妈妈都知道自己孩子的生日,请不知道的同学回家了解一下,多关心一下自己的父母。师问3:那你知道妈妈最爱吃的菜吗?你可以选择知道、不知道或者是没有爱吃的(拖动白板上相对应的表情符号)。请大家用不同的手势表示出来。我找3名同学统计各组的数据,写在黑板上(随机找3名学生数人数)。下面我来随机采访一下:你妈妈最喜欢吃的菜是什么?(教师随机采访,结合营养搭配和感恩教育)
前几天我们去春游的时候,汽车开过高架,孩子们都很兴奋的说上桥了上桥了,于是我问这是什么桥?孩子们有的就说是高架桥。路上我们还遇到了很多别的桥,特别是太户大桥和公园里的小木桥等等,一路上我引导孩子们观察这些桥。作为水城的苏州,桥是我们这座城市最富有特色的一种建筑物,于是我建议孩子们回去搜集各种各样的桥,去找找看有些什么桥?作为大班的孩子,对桥是有了一定的生活经验的,因此我针对这些情况决定将孩子们对与桥的兴趣引入到我们的课堂之中,并指定了以下的活动目标: 1、知道各种各样的桥以及与人们的关系。 2、了解桥的不同外形使用的不同的建造材料和桥的各种功用。 3、对各种各样的桥有兴趣,能够积极的参加讨论和探索。
自然界中充满着神奇有趣的科学现象,就拿“风”这一自然现象来说,一年四季天天都和我们会面,是孩子们从能来到户外的那一刻起就能感受到的现象。现在正值春天,是孩子们探索风的好季节。我们江南春天的天气,就如娃娃的脸说变就变。白天的气温很高,到了晚上却会突然刮起大风来,气温也骤降。在幼儿园,会听到大班孩子们在议论:我看见迎春花的花瓣被风吹到了地上;大风把垃圾吹得到处都是,清洁工人又要重新打扫了;今天有点冷,妈妈又给我多穿了衣服……从孩子的话中,发现“风”是孩子需要的、感兴趣的内容。追随孩子的经验和生活,就让大班孩子围绕“风”自主生成一系列的探索“风的奥秘”的活动。大班幼儿对周围事物、现象感兴趣,有好奇心和求知欲,而且有些幼儿能初步运用感官动手动脑,探索问题。但孩子有时会对事物现象凭主观臆断,缺乏科学性。希望幼儿在主动学习的过程中,大胆探索,培养幼儿对现象能进行客观描述,以事实为依据得出推理,懂得科学存在于客观事实,而不是教师的头脑之中。
活动材料来之于幼儿常态生活《纲要》中指出:幼儿园教育活动的选择要做到“既贴近幼儿的生活来选择幼儿感兴趣的事物和问题,又有助于拓展幼儿的教育和视野”。根据这个原则,教育者必须关注与幼儿最贴近、最生动、最感性的现实生活,通过价值判断、从中发掘、筛选有利于幼儿健康发展的生活作为幼儿园课程的教育内容。同时,活动的内容决定了活动的材料来自于幼儿的日常生活。秋季来临,天气渐凉,小朋友来园时穿外套的越来越多,随着时代的发展,时装潮流同样也影响着孩子们的日常穿着,幼儿外套的款式可谓琳琅满目。外套的色彩、图案、面料、装饰可以说有很多教学价值蕴藏其中,而且我们每天接触的日常用品是最为方便最简便的教学具,不要刻意的制作不要精心的准备,随手可得,又最能引发幼儿对身边事物的关注,继而在关注的基础上发展幼儿相关经验。活动价值在确定目标过程中逐步挖掘在刚开始的活动设想中我对“我的外套”的教学价值分析是:1.观察分辨不同与相同不同在于颜色、花纹图案、大小、材料;相同在于衣服结构衣领衣袖纽扣。2.在生活情境中穿脱、整理的能力。但是继而深入思考一下发现自己把幼儿感知范围散的点很多,范围很宽泛,幼儿的学习是粗浅的、全面的“百科全书”式的。在一个集体活动中如何发挥出更有效的教学价值呢?小朋友的一件外套是不是只有科学常识方面的教学价值了呢?外套上的一些设计的细节不同能不能挖掘更多的教学价值呢?于是我综合分析了外套中隐含的一些教学价值,从幼儿的经验和领域学科特点出发,将常识性的知识经验积累和数学能力相结合重新调整教学设计,对活动的重点进行重新调整:1.在叠放的衣服中找出自己的外套,对观察外套有兴趣。2.尝试在游戏中按外套的一个特征进行分类、数数。活动环节在目标引领下尝试设计
二、目标定位活动目标的制定应体现它的教育性、价值型和实际性,活动目标既是整个教育活动的起点和归宿,同时对活动也起着导向作用。因此从满足幼儿认知、情感、能力的发展需要,我制定了以下活动目标:1.知识目标:感知淀粉遇碘会变成蓝。2.技能目标:能运用各种感官,动手动脑,探究和解决问题。3.情感目标:乐意与同伴合作,体验活动的乐趣。重点:通过操作,感知淀粉遇到碘会变蓝。难点:尝试运用淀粉遇到碘变蓝的原理发现、探究和解决问题。三、活动准备:活动准备为活动的成功开展提供了可能,在科学活动中材料的结构及投放很重要,它直接关系到能否构成问题情境的探究点,有时甚至影响到活动的成败,因此,我为活动做了以下的准备:慢羊羊村长头饰、馒头、土豆、白菜、胡萝卜、香蕉、梨、标有字母A与B的奶粉,棉签、图卡、笔。四、教法与学法:新《纲要》指出:教师应成为学习活动的支持者、合作者、引导者,活动中,教师不仅要用生动的语言,神秘的动作来感染幼儿外,还要积极调动幼儿的积极性,让幼儿真正成为学习的主体,创造条件让幼儿参与探索活动,在活动中,我使用的教法有观察法、示范操作法、练习法、经验迁移法。多种教学方法的整合,达到了科学性、愉悦性、艺术性的和谐统一。
自然界中充满着神奇有趣的科学现象,就拿“风”这一自然现象来说,一年四季天天都和我们会面,是孩子们从能来到户外的那一刻起就能感受到的现象。现在正值春天,是孩子们探索风的好季节。我们江南春天的天气,就如娃娃的脸说变就变。白天的气温很高,到了晚上却会突然刮起大风来,气温也骤降。在幼儿园,会听到大班孩子们在议论:我看见迎春花的花瓣被风吹到了地上;大风把垃圾吹得到处都是,清洁工人又要重新打扫了;今天有点冷,妈妈又给我多穿了衣服……从孩子的话中,发现“风”是孩子需要的、感兴趣的内容。追随孩子的经验和生活,就让大班孩子围绕“风”自主生成一系列的探索“风的奥秘”的活动。大班幼儿对周围事物、现象感兴趣,有好奇心和求知欲,而且有些幼儿能初步运用感官动手动脑,探索问题。但孩子有时会对事物现象凭主观臆断,缺乏科学性。希望幼儿在主动学习的过程中,大胆探索,培养幼儿对现象能进行客观描述,以事实为依据得出推理,懂得科学存在于客观事实,而不是教师的头脑之中。
2、目标定位:《纲要》指出,五大领域的内容相互渗透,从不同的角度促进幼儿情感、态度、能力、知识、技能等方面的发展,因此,根据幼儿的年龄特点和实际情况,我制定了以下三个方面的目标:(1)让幼儿在玩水中感知水的特性,知道水是无色透明的、无味的,是会流动的,具有浮力和溶解性的特点。(2)通过动手操作实验,发展幼儿的观察能力和动脑动手能力。(3)教育幼儿要节约用水。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。