最后科学活动来源于生活,更应回归与生活。本次活动的延伸也是继续探索的起点。所以,我从捉泥鳅的现象中生成防滑活动,让幼儿理解科学对我们生活的帮助和重要性。 活动目标:1、大胆亲近泥鳅,进一步了解泥鳅的主要特征,体验捉泥鳅的快乐。2、在探究活动中发现粗糙材料易抓泥鳅的现象,激发探索身边科学现象的兴趣。 活动准备1、泥鳅、盆、棉手套和塑料手套、青菜叶和甜瓜叶、干毛巾和锦丝布、统计表、笔、字卡(粗糙、光滑)等2、介绍泥鳅生活习性、主要特征及黏液作用的相关录像。童谣flash《捉泥鳅》 活动过程: 一、欣赏童谣flash《捉泥鳅》(在轻松、愉快的气氛中,引导幼儿回忆已有的生活经验,生生互动,了解泥鳅的一般特征,同时激发幼儿探索泥鳅的积极性。) 师:歌曲中的小妹妹为什么那么高兴?泥鳅长的是什么样的?(请个别幼儿讲述已知的泥鳅的特征) 二、观察感受泥鳅,进一步了解泥鳅的外形特征。(提升幼儿经验,解决重点:黏液。1、(出示泥鳅)师:请小朋友仔细看看,泥鳅身上还有那些地方我们没说到的?它有没有特别的地方或有趣的事情呢。2、幼儿观察后讲述自己的发现。(师提醒幼儿讲完整的话)3、幼儿徒手尝试捉泥鳅。1)第一次捉泥鳅 师:让我们一起去和泥鳅玩玩,看看会有什么有趣的事情发生?你怎么捉泥鳅的?泥鳅在你手里是怎样的?
活动目标1、探究、发现各种形状的纸片在快速转动时都会呈现出圆形。2、在讨论、记录、交流中积累和提升有关转动的经验。3、乐意针对问题作进一步的探究,体验愉快的情绪和探究的乐趣。 活动准备1、圆形、椭圆形、三角形、正方形的纸片(中心有小孔)、可制作陀螺的塑料小棒、蜡笔等各若干。2、实物投影仪。3、猜测记录表人手一张。 活动过程一、导入活动,激发探究兴趣1.投影展示各种图形,幼儿观察讲述都有哪些图形和我们玩转陀螺的游戏。2.请幼儿结合自己的生活经验,说说什么形状的纸片比较适合做陀螺。 二、在做做、玩玩中发现圆形的纸片在转动时也是圆形的1、提出制作与观察的要求:先选一张圆形的纸片把它做成陀螺玩一玩,看看它转动起来是怎样的。2、幼儿制作、玩耍陀螺,引导幼儿观察陀螺转动起来是怎样的。 3、请幼儿说一说陀螺转动起来是怎样的。幼A:我的陀螺转动起来是歪歪斜斜、摇摇摆摆的。幼B:我的陀螺先是慢慢的,后来越转越快,最后就停下来了。幼C:我的圆形陀螺转起来也是圆形的。幼D:陀螺转动起来它的形状有点模糊。(评:在这里,教师因势利导,让幼儿根据自己的经验先选圆形的纸片制作陀螺,这样既有利于幼儿习得制作陀螺的方法,也有利于引导幼儿更多地关注陀螺在转动时发生的一系列变化,为下面的环节作好铺垫。) 三、在猜猜、试试、说说中发现不同形状的纸片在快速转动时都呈现出圆形1、出示记录表,介绍记录方法:“问号”表示想一想,“小手”表示试一试。把我们的猜想画在问号下面,等一会儿把尝试后的结果画在小手下面。2、让幼儿猜一猜三角形、椭园形、正方形的纸片转动起来是什么形状的,并把自己的猜想记录在表格中。 3、个别介绍自己的猜想。幼A:三角形转动起来是三角形、椭圆形转动起来是椭圆形、正方形转动起来是正方形,不会变的。幼B:它们转动起来都会变成圆形。幼C:转动起来会变成花形。幼D:正方形会变成圆形,三角形还是三角形.(评:“猜测与假设”有助于激活幼儿的思维。动手前先动脑,幼儿的思维会处于一种激活状态+这无疑对发展幼儿的思维能力起到了重要作用。在这里,我对幼儿的任何猜测都不作评价,而是留待他们在接下来的环节中,通过自己的操作来发现与验证。)4、实验验证并记录结果。引导幼儿仔细观察不同形状的纸片在快速转动时是什么形状的,并把实验结果记录在表格中。
2、通过比较分析,理解长短粗细都是相对的,培养幼儿思维的精确性。 重点:了解不同材料的绳子的特性及用途。 难点:理解长短、粗细是相对的。【活动准备】 1 活动室的屋顶吸着用长短粗细不同的绳子拴着的气球。 2、多种材料的绳子头若干。 3、字卡“长”、“短”、“粗”、“细”。【活动过程】 1、“够气球”,引起幼儿对绳子的兴趣。 教师引导幼儿观察屋顶上漂亮的气球,鼓励幼儿跳起来将气球够下来。讨论:为什么有的气球能够着,有的气球够不着?(拴气球的绳子有长有短)拴气球的绳子是用什么材料做的?是什么颜色的?(毛线绳、棉线绳。。。。。。)。
【活动目标】 1、通过实验初步感知不同布的吸水性不同。 2、发展观察力和动手操作能力,激发对生活现象的好奇心。【活动准备】 1、各种质地的布块若干(棉布、纱布、绒布、尼龙布、麻布、塑料布等)及眼药水瓶若干。 2、挂图。【活动过程】 1、幼儿猜猜:换别的布做伞面,行不行? 2、幼儿分组观察各种布的区别。引导幼儿用眼睛看(颜色),用手摸一摸(厚薄、软硬、粗细),使劲拉一拉,听听它们会发出什么样的声音。请幼儿说一说自己都观察到了什么,有什么想法。
活动要求:l、区分能滚与不能滚的物体,比较其异同,知道球体能向各个方向滚动,轮子能向两面滚动。2、通过尝试活动,初步培养幼儿自己发现问题,解诙问题的能力。 活动准备:l、圆球,瓶子,轮子娃娃各一个;一辆没有轮子的汽车。2、收集各种大小纸盒、积木、球、饮料瓶,轮子状的物品及各种玩具车。3、准备三条l—2米左右长的路。 活动过程:一、什么会滚,什么不会滚?1、出示两辆车(一辆有轮子,一辆没有轮子)通过比较,知道轮子可以滚动。①教师以小象笨笨的口吻引出课题。师:“我是小象笨笨,城里的朋友给我送来了一辆汽车,可是我不知道怎样让车动起来,谁能帮助我?”②出示没轮子的汽车,让幼儿说一说为什么不会动?③教师给汽车装上方形的轮子,让幼儿观察,为什么汽车还是不会动。幼:(方的东西不能浪,圆的东西能滚。)④通过比较,让幼儿知道什么才是滚?(连续着向前旋转叫做“滚”)2、自由玩纸盒、积木;轮子等物,引导幼儿将物品分成“会滚”与“不会滚”两堆。师:我有一堆东西,可是我不知道哪些东西会滚,哪些东西不会滚,你们去试一试,然后把不会滚的放到(滚)这个框里,把会滚的放到(滚)那个框中。(幼儿动手操作)
二、准备:1、毛巾、海绵、布、毛线、目条、石头、铁板等。2、塑料盆、水;红、绿色水;玻璃管(内塞纸巾)。 三、过程:1、游戏《帮水搬家》(1)小朋友看这里有什么?(脸盆和水) 今天李老师请你们玩一个游戏,叫做《帮水搬家》,请你们两个一组合作着把红脸盆里的水搬到篮脸盆里去,但是不能直接拿起脸盆把水倒过去,请你们去选择箩筐里的一样东西帮帮忙,把水搬搬家。注意别把水洒在地上了(2)幼儿选择材料帮水搬家,教师观察并指导,提醒幼儿卫生。(3)提问:刚才你是怎么帮水搬家的呢?为什么这些东西能帮水搬家呢?现在我们再来帮水搬家,这次请你选择刚才没有用到的东西去帮水从蓝脸盆搬到红脸盆去,请你想想第一次搬和第二次搬哪次快?为什么?(4)幼儿再次游戏(5)提问:这次帮水搬家和上次帮水搬家你用的什么材料,有什么不一样?为什么?(海绵吸的水多,布吸的少。)小结:原来,海绵毛巾,布这些东西放到另外一个脸盆上拧一下就帮水搬了家。
活动目标1、引导幼儿自己做小实验,了解“蒸发”以及“雨是怎样形成的”等科学现象。2、通过探索“雨”的形成,理解“梅雨季节”的来历。3、激发幼儿发现问题,并积极探索自然现象的兴趣。 活动准备1、酒精灯、烧杯、玻璃片、火柴等实验工具。2、投影机、故事《小水滴旅行记》、幻灯片、磁带。
2、培养幼儿的发散性思维和动手构建能力。 3、激发幼儿对科学活动的兴趣。 活动准备: 1、常见桥梁图片两幅。 2、从网上下载的各种不同桥梁图片资料若干,电脑一台。 3、积木(每组两篮),作业纸每人一张。每人从家带来的小纸盒两个。 活动过程: 1、出示图片,引出关于桥梁的课题,了解几种常见桥梁的类型。(斜拉桥、拱桥、立交桥)
2、培养幼儿的动手操作能力和比较能力。3、引导幼儿通过摸摸、玩玩,感知纸的特性。 活动准备各种各样的纸若干,如卡纸、宣纸、绘画纸、皱纹纸、牛皮纸等。多媒体课件、即时贴、每组一盆水。 活动过程1、带领幼儿欣赏手工制品,引出活动主题。今天这里举办了手工作品展,我们一块去看看吧。提问:你看到了什么?它们使用什么材料制成的?他们虽然都是纸,让我们来找找什么地方不一样?
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
今天,伴着雄壮的义勇军进行曲,鲜艳的五星红旗再次在我们眼前冉冉升起。回首刚刚过去的两个月,它记录着每一个学子和老师的辛勤,更蕴含着我们的智慧。作为荣智学校新一届的初中生,我们为学校的方方面面感到骄傲,无论是环境优雅的教室还是功能齐备的多功能展示厅,无论是生物实验室、微机室等专用教室,还是图书馆等供我们学习的场所都显得那样舒适温馨,而我们的老师,个个精神抖擞,正是他们的精心呵护与谆谆教诲,才有我们学生的健康成长。他们以纯洁的心灵塑造我们的灵魂,以健康的人格魅力带动我们的品格养成,从而营造我校和-谐健康,洋溢着人文色彩的校园氛围。同学们,求学阶段对于我们每个人来说,就像是手中刚刚拿到的新书一样,散发着油墨的清香,蕴藏着很多待开发的秘密,需要我们去探索,“言行规范,健康发展,学有所长”是学校对我们的要求。因此,正如今天一样,当我们迈进校门的那一刻起,我们要说,新的一天我们要从遵守纪律做起。俗话说:“没有规矩不能成方圆。”纪律是做好一切事情的保障,没有纪律的约束,是什么事情也做不好的。大家知道,鲁迅先生书桌上的“早”字,是严格自律的表现,是自觉守纪的典范,正因为这样,鲁迅先生才成为伟大的文学家、思想家、革命家。曹操“割发代首”,带头守纪,古往今来传为佳话。
接下来,学生讲一讲自己和家人过中秋节时的内心体验,并用写一写、画一画、唱一唱等自己喜欢的方式来表达,之后,全班交流展示。板书:幸福 团圆设计意图:体会“中秋节,团圆夜”的中秋文化味道,明白中秋团圆之意义。环节三:快快乐乐咏中秋学生阅读教材第14页到第15页的绘本《古诗词中的月》,学生说说还知道的咏月思亲的佳句,也可以自己创作一两句儿歌。设计意图:学以致用,感受中秋文化所蕴含的人文情怀,感悟中华文化的魅力。环节四:感悟明理,育情导行学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节五:拓展延伸,回归生活回家后,与爸爸妈妈分享课上学到的有关中秋的一些话题。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
设计意图:通过设疑、讨论及学生的亲身体验与教师的引导,得到描述圆周运动快慢的两个物理量,也就成功的打破了学生在认识上的思维障碍,突破了物理概念教学的难点。在解决线速度和角速度的问题之后,我将引领学生学习匀速圆周运动的概念以及匀速圆周运动中线速度、角速度的特点。并引出匀速圆周运动中周期、转速的知识。为了加深学生对线速度、角速度与半径关系的认识,我设计了第三个学生体验活动:四名学生以我为圆心做圆周运动,四名学生始终并列,这时里圈同学走动不急不慢,而外圈同学则要小跑。通过学生的活动,不难发现在角速度相同的情况下,半径越大的线速度也越大。定性的得到了线速度、角速度与半径的关系。接下来让学生利用所学知识推导线速度、角速度与半径的关系。设计意图:这样就通过设疑、学生猜想、体验、推导的方式得到了结论,突破了本节课的难点即线速度、角速度与半径的关系。
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
4,表演歌曲 (1)老师带领学生随乐表演唱。 (2)“同学们的歌声真美妙,动作也很优美!老师从你们欢快的歌声和绽开的笑脸中感受到了同学之间团结和纯真的友情。大家能不能开动脑筋,和你的小伙伴团结合作,用歌唱,舞蹈,情景表演,绘画等方式把我们歌曲的意境表现得更美好,更生动? (3)小组讨论,教师巡视指导。 (4)各小组展示表演,学生互评,及时给予表扬。 “你们的歌声悦耳动听,舞蹈欢快活泼,表演情真意切,画也非常漂亮,无论是哪种表现形式,都把同学之间的团结友爱表现得淋漓尽致!大家真是多才多艺。 (三)、课堂小结 今天,老师和同学们一起渡过了愉快的一节课。在这一节课中我们学会了歌曲《一把雨伞圆溜溜》,连较难的休止、附点、切分节奏也唱得很准确;不仅如此,欢快,活泼的情绪感染了我们每一个人,强弱起伏的旋律把歌儿唱得更加生动优美;更重要的是大家在团结合作中成功地把歌曲的意境表现了出来,更真切的体会到了团结的力量和纯真的友情。希望大家在学习、生活中也能像歌里的孩子一样团结友爱,互相帮助。
四、小结1.知识:如何采用两角和或差的正余弦公式进行合角,借助三角函数的相关性质求值.其中三角函数最值问题是对三角函数的概念、图像和性质,以及诱导公式、同角三角函数基本关系、和(差)角公式的综合应用,也是函数思想的具体体现. 如何科学的把实际问题转化成数学问题,如何选择自变量建立数学关系式;求解三角函数在某一区间的最值问题.2.思想:本节课通过由特殊到一般方式把关系式 化成 的形式,可以很好地培养学生探究、归纳、类比的能力. 通过探究如何选择自变量建立数学关系式,可以很好地培养学生分析问题、解决问题的能力和应用意识,进一步培养学生的建模意识.五、作业1. 课时练 2. 预习下节课内容学生根据课堂学习,自主总结知识要点,及运用的思想方法。注意总结自己在学习中的易错点;
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。