一、说教学内容分数的意义和性质以及分数的加、减运算教材115页总复习以及教材118页练习二十八第6~9题。二、说教学目标1. 使学生进一步理解和掌握分数的意义及性质,并能解决一些问题,使学生进一步理解同分母、异分母分数加、减法的算理,掌握同分母、异分母分数加、减法的计算方法。2.能熟练地进行约分和通分,认识约分、通分的重要性,教学过程中,培养学生分析概括的能力,并进一步培养学生的计算能力。3.初步形成评价与反思的意识,渗透转化的数学思想和方法。培养学生合作学习的能力,提高学生互帮互助的思想品质。三、说教学重点、难点重点:分数的意义及基本性质的应用。难点:进一步理解同分母、异分母分数加、减法的算理,培养学生的简算意识和应用能力。
(一)本单元教材分析和学情负数是小学阶段数学教学新增加的内容。很久以来,负数的教学一般安排在中学教学的起始阶段进行,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的基础,《标准》将其提前到小学阶段教学。认识负数,对于小学生来说是数概念的一次拓展。学生以往所认识的数——整数、分数、小数等都是算术范围之内的数,建立负数的概念则使学生认数的范围从算术的数拓展到有理数,从而丰富了小学生对数概念的认识。(二)本单元的教学目标根据以上教材分析和学情,我确定本单元的教学目标如下:1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
二、教学目标分析新课标指出,教学目标应包括知识与技能,过程与方法,情感态度与价值观这三个方面,而这三个方面又是一个紧密联系的有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:1、从操作活动中理解因数和倍数意义,掌握找一个数的因数和倍数的方法,会判断一个数是不是另一个数的因数或倍数。 2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义观点。 3、通过主动探究,合作交流,培养学生的合作意识、探索意识,以及热爱数学学习的情感。
一、说教材《约分》是人教版小学数学五下第四单元的教学内容,在学习约分前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,这些知识的掌握都为约分方法的学习提供了认知基础。教材通过例4,教学约分的一般方法。同时在学生会求两数最大公因数的基础上,启发他们思考,有没有更简便的方法?并介绍了约分时的常用书写形式。二、谈学情这一课的学习对象是五年级的学生,他们一方面具有小学生的特点:对新鲜事物很感兴趣,以形象思维为主,有强烈的表现欲望、好胜心,但是部分学生还不能快速找出两个数的公因数、最大公因数以及快速判断两个数是否互质。 二、说教学目标基于对教材和学情的分析,我们确定了以下教学目标:1.知识目标:理解和掌握约分的意义和方法,掌握最简分数的概念2.能力目标:熟练进行约分,培养灵活运用所学知识解决实际问题的能力。 3.情感目标:引导探索知识间的内在联系,培养学生观察、比较、分析的能力和良好的数学学习习惯。
一.说教材(一)教材内容地位作用与学情单式折线统计图是人教版义务教育课程标准五年级下册第7单元的内容。是在学生之前学习掌握了数据收集、整理、描述与分析等简单基本方法,会用简单统计表、条形统计图等方法表示和分析统计数据与解决简单实际问题的基础上进行教学的;通过折线统计图的教学,帮助学生了解折线统计图的含义、特点,并进行简单的数据分析,了解统计在现实生活中的意义和作用,有效构建数据分析观念。(二)教学目标基于以上对教材的分析理解和学生生活经验与从具体到抽象的认知规律,拟将教学目标定位确立为: 1.知识与技能:认识了解单式折线统计图及其特点和作用,根据需要用折线统计图直观表示统计数据,并进行简单的数据解释和分析与预测。 2.过程与方法:经历探究折线统计图特点与作用的过程,培养发展学生发现、提出、分析、解决问题的能力。
说教材。《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。会用“鸽巢原理”解决简单的实际问题。通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。
2.教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解比例尺的意义,掌握数值比例尺和线段比例尺的应用 ②能力目标:在比例尺的相互转换中,培养学生归纳、概括的能力。 ③情感目标:在比例尺的运用中,让学生体会数学与生活的联系。3.教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解比例尺的意义,能根据比例尺求图上距离或实际距离。难点是:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。二、 说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。因此,这节课我采用的教法:课前预习法,引导探究法;学法:自主学习法,合作交流法。
一、说教材:1、教学内容:我说课的教学内容是整理和复习2、教学地位:本课是在学习了所有内容的基础上进行教学的,同时又是前面学习的总结。3、教学目标:(1)使学生结合具体的情境,探索并发现(或理解并掌握)所有所学的内容,会运用所学的知识解决简单的实际问题。(2)使学生主动经历自主探索、合作交流的过程,培养观察、比较、分析、归纳、概括等思维能力。(3)使学生在探索新知的过程中, 体会数学与生活的联系,获得成功的体验,增强学好数学的自信心。4、教学重点、难点:为了使学生能比较顺利地达到教学目标,我确定了本课的重点和难点,教学重点和难点是熟练并掌握所学的所有内容。
一、目标学习目标的制定,我主要依据学材、学情、课标这几个方面。基于教材的分析本节内容选自九年级义务教育教科书(人教版)六年级下册第三章第二小节第一部分《圆锥的认识》。这一部分是在学生掌握了圆和圆柱的相关知识的基础之上而安排的内容。我们要想认识圆锥,进一步学习有关它的知识,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面学习起到一个良好的铺垫作用。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。因此,我将圆锥的特征作为本节课的学习重点。基于学情的分析由于已经是六年级的学生了,他们的主动性和能动性已经有较大的提高,能够有意识的去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。所以在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具体情境中亲自体验感知圆锥的特征。
在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在学会思考,学会观察,学会表达,学会思考教师要设计好问题,学会观察教师要指导学生观察表格和图像,学会表达教师要引导学生如何说,并对学生进行激励性的评价,让学生乐于说,善于说。五、说教学策略和方法活动一:复习引入:1.复习:己知路程和时间,怎样求速度?己知总价和数量,怎样求单价?己知工作总量和工作时间,怎样求效率?2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。【设计意图:在引入过程中,我引导每个学生去思考一组组相关联的量,能用语言叙述,学生通过这一过程,可以深刻感受到生活中存在着大量的相关联的量。本节课的内容比较抽象,较难理解所以我采用复习旧知,引发兴趣来导入新课,让学生将知识联系到生活,使他们乐于学习。】
一.图片导入,激发兴趣.[纳米和纳米技术都很微观,对学生来说很陌生、很抽象。教师出示关于纳米和纳米技术的图片,可以增加直观感,能较好地激发学生的学习兴趣.]1.导语:大家是否还记得在科幻世界里那些随意消逝变化的人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识?2.展示图片:图1.纳米机器人(描述的是一个纳米机器人在清理血管中的有害堆积物。由于纳米机器人可以小到在人的血管中自由的游动,对于像脑血栓、动脉硬化等病灶,它们可以非常容易的予以清理,而不再用进行危险的开颅、开胸手术。)图2.纳米技术制作的中国地图.(这是中国科学院化学所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)3.板书课题:简述:这篇科学小品文向我们简单而准确地介绍了纳米,纳米技术等科学知识,展示了纳米技术美妙的前景.
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。