解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
大学开学国旗下学生讲话稿【一】 在这激-情似火的盛夏,伴着缕缕金色阳光,三秦学子们齐聚一堂,用自信谱写豪迈,用魅力抒发胸怀,更用智慧、理性、希望展现大学生的风采!站在这里,此时此刻,我心中依然在不断地鼓励自己。为什么?因为面对这次比赛,我一直深感压力与恐惧!我害怕失败,害怕失败后无法面对那一双双期待的眼神;但是,我告诉我自己,面对生活,我需要这样一种心态:直面逆境,不做生活的屈服者!说起逆境,我们大家的思维定势都会联想到一些大悲大苦的故事。故事中主人公的经历,总是常人无法想象和承受的。其实我们大家的生活并没有多少大坎坷,大痛苦;相反,我今天所要谈的逆境,就像前面我自己的例子一样,是我们大家生活中经常可以碰到的琐事与烦恼。举一举例子。有时,我们会因为与朋友的关系搞不好而发愁;有时,我们会因为感到社团领导交给自己的任务太难,而身感压力;还有时,我们会因为学业成绩的不满意,而哀声连连。诸如次类的琐事与烦恼才真正构成了我们生活中常见的逆境。面对它们,我们感到痛苦,我们感到忧愁。到底该如何去获得那一颗宁静与祥和的心?请随我一起回顾我曾经的一个故事。大二的时候,我满怀信心的要在学校举办一次“大学生成功心理学” 的演讲,但是,在筹办的过程中我却遇到了以下困难:首先,这次历时两天、每天四小时的演讲需要记忆的材料量很大,10张VCD,6本书,不仅要浓缩,还要有系统性、层次性以及趣味性;其次,我为了把宣传工作做好,需要完成近20张海报,6条横幅,50张多媒体幻灯片的制作;最后,就是那一颗恐惧演讲失败而惴惴不安、几欲放弃的心。当时, 面对这些困难,身处逆境的我,该当如何?!
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
(一)记教学日记 教师在自己的教学过程中或教学结束之后,对自己教学得失可以进行总结反思,这种反思可以从以下几个方面入手:从教学参与者看,可以反思教师的教学行为得失。主要涉及到的是教学方法的反思,如针对不同类型的知识(概念、原理等)是否采用了相应的方法,以及教学方法与教学目标的适合性,可以反思学生的学习行为得失,反思教学目标的达成情况;从教学进行的步骤看,可以反思教学的导入,教学各环节的衔接;从教学内容看,可以反思教学目标设置的合适性,教材内容重点、难点的处理,单元教学内容在学科体系中的位置等。 (二)说课 说课是对备课的口头说明,但它不同于备课,说课讲备课的过程及其理由,而备课主要是指教学的内容和方法。 说课教学反思方面具体体现在:教师在备完课乃至讲完课之后,对自己处理教材内容的方式与理由做出说明,讲出这些过程,就是讲出自己解决问题的策略。而这种策略的说明,也正是教师对自己处理教材方式方法的反思。事实上,说课总是讲给同行听的,同行听后要提出建议与评比,这是一个很好且有效的教学反思途径。并能形成反思群体,共同提高。 (三)听课与评课 听课决不是简单地评价别人之优劣,不是关注讲课者将要讲什么,而是思考自己如何处理好同样的内容,然后将讲课者处理问题的方式与自己的预想处理方式相对照,以发现其中的出入。教师讲课时并不总是能注意到自己教学上的得失,但若课后观看自己的教学录像,特别是与同行、专家教师一起,边看边评,则更能看出自己在教学中的长短。
社会是由人集合而成的,而人们活动的目的往往不同,如果没有一个规矩来约束,各行其是,社会就会陷入无秩序的混乱中。因而让受教育者形成规则意识,这是所有教育的基点。培养学生的规范意识、规则意识也是《思想道德修养与法律基础》课教学的核心内容和重要目标。 思想品德教研部在网络集体备课时认为,疫情蔓延以来,不断更新的数字,不断变化的疫情实况,考验着人们的规则意识与理性。在这次抗击疫情工作中,有人无知无畏、心存侥幸,不加防护,不听劝阻;有的人无视规则,毫无理性,造谣传谣;有人无视规定,招摇过市参与聚会,给社会抗疫工作增添了不必要的麻烦。为此,教师们通过网络平台告诉学生:一个强大的国家,需要有规则意识和理性成熟的公民。特别是在疫情防控的关键时期,更不能做无视规则、失去理性的事情。按照上级部门的文件精神和通知要求,各高校都制定了相关规定,比如要求学生不得提前返校,教师要做好延期开学期间线上教学的各项准备工作等规定。大家都要严格遵守这些规定,分清是非,成为具有规则意识和理性的新时代公民。
面对来势汹汹的疫情,从猝不及防到全力阻击,从各自为战到同舟共济,国人或勇毅驰援,或坚守岗位,或宅家不出,我们各自用自己的方式共同抗击疫情。中华民族在灾难的考验中凝聚起的正气磅礴的民族精神,百折不挠的民族品格,万众一心的民族情怀定格为无数震撼心灵的画面,砥砺国人奋力前行。 每天,我宅居在家,却和世界息息相通:单位群里天天打卡汇报健康,我打卡之后总会看一看群里那些熟悉的名字,心里莫名的有一种别后无恙各自安好的喜悦;学校领导天天上门查询问候,在我登记健康的时候,我们总会微微一笑,似乎放下了千斤重担;亲朋好友不时微信问候,我们的话题不再只是家长里短,还有武汉加油,中国挺住,我们一定赢……生平第一次,我真实地体会到:无数的人们,无穷的远方,都与我有关。
一、加强教育教学理论学习,提高个人的理论素养 1. 认真学习教学大纲和有关数学课程等材料。 2. 加大对自己和学生的自我分析和解剖。 二、按数学课程标准,进行教学研究,提高课堂教学效益
二、工作重点 1、教学常规常抓不懈,培养学生良好的学习习惯。 2、健全以课堂教学研究为核心的教研,立足校情开展教研活动。 3、开展丰富的语文活动,促进学生学习用心性与语文潜力的提高。
3)乘除运算①有理数的乘法法则:(老师给出,学生一起朗读)1. 两数相乘,同号得正,异号得负,并把绝对值相乘;2. 任何数与零相乘都得零;3. 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4. 几个有理数相乘,若其中有一个为零,积就为零。②有理数的除法法则:(老师提问,学生回答)1. 两个有理数相除,同号得正,异号得负,并把绝对值相除;2. 除以一个数等于乘以这个数的倒数。③关系(老师给出)除法转化为乘法进行运算。
一、课前准备师:同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?学生:我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围,适合什么人穿,但肯定与身高、胖瘦有关.师:这位同学很善动脑,也爱观察.S代表最小号,身高在150~155cm的人适合穿S号.M号适合身高在155~160cm的人着装……厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.你觉得这种生产方法有什么优点?学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位cm).如下
本节的内容主要是反比例函数的概念教学.反比例函数概念的建立,不能从形式上进行简单的抽象与概括,而是对这些实例从不同角度抽象出本质属性后,再进行概括。教材设计的基本思路是从现实生活中大量的反比例关系中抽象出反比例函数概念,让学生进一步感受函数是反映现实世界中变量关系的一种有效数学模型,逐步从对具体反比例函数的感性认识上升到对抽象的反比例函数概念的理性认识. 同时本节的学习内容,直接关系到本章后续内容的学习,也是继续学习其它各类函数的基础,其中蕴涵的类比、归纳、对应和函数的数学思想方法,对学生今后研究问题、解决问题以及终身的发展都是非常有益的.基于以上分析,本节教学设计是建立在一个个数学活动的基础上,经过对情境理解、本质抽象的积累而形成的.让学生对一类问题情境中两个变量间的关系,在充分经历写表达式,计算函数值和观察函数值随自变量变化规律的过程中,逐步概括形成反比例函数的概念.针对教学实际,我选取了贴学生现实的,有价值的实例“文具店里买学习用品”和“剪面积为定值的长方形纸片”等作为问题情境.
教学目标1.能从实际问题中得到函数关系式,学会积累函数的建模思想;2.能对不同背景下函数模型(关系式)的比较,抽象出一次函数和正比例函数的概念,发展抽象思维及概括能力;3.初步理解一次函数与正比例函数的概念;4.知道一次函数与正比例函数的联系和区别,体验特殊和一般的辩证关系;5.会判断两个变量之间的关系是一次函数还是正比例函数;6.能根据问题信息,确定一次函数与正比例函数的表达式,提升数学应用能力;7.会根据一次函数与正比例函数的概念,求字母的取值;8.在一次函数和正比例函数概念的形成与应用过程中, 体验函数与人类生活的密切联系,增强对函数学习的求知。感受合作交流的必要性,同时提高学生的观察、抽象、概括的能力和语言表达能力,从而培养学生对学习数学的兴趣。
活动目标:1、运用已有的数经验进行10以内的数数,初步感知数的守恒。2、通过倾听故事,体会孩子对母亲的爱。活动准备:课件《爱心礼物》、黑板两块、操作表格数份、红五星若干。活动过程:一、故事《大大和小小》导入二、大大选裙子(在贴一贴的游戏中初步感知物体不受大小、排列方式、疏密程度影响的守恒关系。)1、观察裙子(裙子有什么不一样?裙子上的数字是什么意思?)小结:这些数字是裙子上的编号,上面有数字1的说明是1号裙子。2、帮助大大选花最多的裙子送给妈妈,让孩子思考选择。3、贴一贴:你认为花最多的是哪条裙子?为什么?(孩子观察表格后再贴)4、讨论验证:(活动的关键,引发幼儿争论通过验证来解决问题)(1)到底是哪一条呢?你是怎么知道这条裙子上的小花是最多的?(2)产生解决办法(运用已有的数数经验)(3)小结:原来,裙子上的花是一样多的,你们用数一数的办法找到了正确答案,所以我们不能只看花的大小、排列方式来决定花朵的多少而是要用数数的方法。 三、小小选裙子(迁移运用,继续感知物体数量的守恒)1、帮助小小选花最少的裙子送给妈妈。(把五角星贴在相应的框里)2、填表格最后一格:裙子上花有几朵?3、验证小结:原来,裙子上的花是一样多的,所以我们不能只用眼睛看的办法,有时候我们的眼睛也会欺骗自己,我们就需要用数一数的办法才能知道正确的答案。
活动准备: 黑色或棕色蜡笔,白纸活动过程: 一、拥抱大树 来到户外,每个人寻找一棵自己喜欢的大树,做上记号,并与之拥抱。 师:闭上眼睛,用手感觉树皮的质地,说说自己的感受。
准备:1、名画课件:大碗岛的星期天 2、画纸、绘画工具人手一份。 3、事先和幼儿一起认识对比色。 4、事先带幼儿到田野里去秋游。活动过程: 一、导入。 师:小朋友,你们以前画过人吗?你画的人是什么样子的?是正面、背面还是侧面? 幼儿自由回答。二、演示名画《大碗岛的星期天》,引导幼儿欣赏。 师:今天老师也带来了一幅人物画,请你来找一找画面中的人是面向哪里的。 教师播放课件让幼儿欣赏,提问: (1)你在画中看到了什么? (2)这些人在干什么?他们有些什么样的姿态?你能不能表演一下? (3)这是什么季节?你能猜出他们在什么地方?有什么样的风光?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。