1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;
1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
第一环节:情境引入内容:(一) 情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程 ,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程: .
解:设甲班的人数为x人,乙班的人数为y人,根据题意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
目标导学二:梳理内容,明确观点1.日军的罪行可谓罄竹难书,面对南京大屠杀这段历史,我国举行国家公祭仪式,其目的是什么呢?请结合课文第一自然段的内容进行阐述。明确:文章开篇简要揭示了日军南京大屠杀的罪行,明确公祭的初衷是悼念死难同胞,让中国人民永远牢记南京大屠杀历史,与全世界爱好和平与正义的人们共同维护和平。2.请同学们快速阅读第二、三自然段,看看这两段分别写了什么,有什么作用?明确:第二段主要列举了全世界的正义之士以不同的方式纪念死难者。表明全世界正义之士对“南京大屠杀”历史事实的尊重和对正义的坚持。第三段主要列举了日本右翼分子否认历史的一系列做法。揭露了日本右翼分子扭曲历史,颠倒黑白的丑态,与上文正义之士的做法形成鲜明对比,突出对日本右翼分子的批判。
一、导入新课在运动领域,美国有篮球梦之队,中国有跳水梦之队。1982年11月24日,中国姑娘吕伟从10米跳台纵身一跃,瞬间惊艳了全世界。这节课,我们一起来学习新闻特写《“飞天”凌空——跳水姑娘吕伟夺魁记》,感受吕伟那“飞天”之美。二、教学新课目标导学一:阅读文章,把握内容1.初读文章,思考:这则新闻特写报道了一件什么事?它是着重抓住什么场面来细致刻画的?明确:这则新闻特写报道的是“跳水姑娘吕伟在新德里亚运会上赢得金牌”的事。是着重抓住吕伟跳水动作来细致刻画的。2.再读课文,思考:本文记叙吕伟跳水过程时是按照什么顺序来写的?还记叙了哪些内容?明确:是按照“准备—起跳—腾空—入水”的顺序来记叙的。本文作者首先记叙吕伟跳水之前的场面,描绘出一幅静态画面;再写吕伟跳水动作全过程,其中包括“准备”“起跳”“腾空”“入水”四个部分;最后写吕伟跳水后观众的反应和裁判评分等情况。目标导学二:研读课文,体会写作技巧
读序言,可以了解内容概要、写作缘由和过程,明确写书的纲领和目的。学生活动一:用5分钟时间浏览一篇序言(译者序和作者序任挑一篇),运用跳读法采集信息点,记录在便利贴上。并互动交流。小结:序言告知我们,“红星照耀中国”是作者在中国及世界局势即将发生大转变的关键一年,冒险来到西北红色区域采访后得出的结论。那么他在苏区见到了什么,听到了什么呢?让我们把视线焦点集中到他笔下那一群“不可征服”的革命青年身上。(二)读目录,了解主要内容及写作顺序1.学生浏览目录,说一说,这本书的写作顺序是怎么样的?主要写了哪几方面的内容?【方法指导】读目录,可以对作品的内容要点和篇章结构有所了解,迅速查阅到所需要的部分。明确:《红星照耀中国》是一部文笔优美的纪实性很强的报道性作品。作者按照事件发生的自然时间顺序真实记录了自1936年6月至10月在我国西北革命根据地进行实地采访的所见所闻。该书绝大部分素材来自作者采访的第一手资料,向全世界真实报道了中国和中国工农红军以及许多红军领袖、红军将领的情况。
明确:导语部分讲了首届诺贝尔奖颁发和诺贝尔的遗嘱。主体部分讲了首届诺贝尔奖获得者及其贡献,诺贝尔奖颁发的机构、时间及地点,诺贝尔奖的奖金来源及评议权等消息背景。目标导学二:熟读课文,探究新闻内容1.“路透社斯德哥尔摩1901年12月10日电”属于什么内容?有什么作用?明确:这是新闻的电头,交代了通讯社名称、发电地点、时间,表明消息材料真实可靠,报道及时。2.第二自然段写了什么内容?有什么作用?明确:语段中一一列举了此次诺贝尔奖的各个门类的获奖者的国籍、姓名、所获得的奖项以及他们所做出的贡献,这些都充分体现了新闻内容的准确性和真实性。3.第三自然段中,作者交代了什么内容?有什么作用?明确:语段明确了诺贝尔奖的颁奖机构、颁奖时间和颁奖地点,使所报道的内容简洁明了,便于读者了解和掌握。
2. 内容内在逻辑本单元亲子之间的交往既承接了上一课的“师生之间”的交往,也为七年级 下册关于中学生提升在集体中的交往水平和能力奠定了坚实的基础,因此本单元 在教材中起承上启下的作用。第一框“家的意味”,通过对“家规” “家训”的探究,引出中国家庭文化中“孝”的精神内涵,引导学生对家庭美德进行深入思考,学会孝亲敬长。第二框“爱在家人间”,通过体验家人间的亲情之爱,进而引导学生感受对 家人割舍不断的情感。第三框“让家更美好”,通过对传统家庭与现代家庭的比较,引导学生认识 现代家庭的特点,树立共创共享家庭美德的意识,共创和谐美德之家。从初识家中“孝”,体验家中“爱”,处理家中“冲突”,到自觉共建家庭 “美德”,学生逐步体味亲情之爱,将“亲情之爱”内化于心、夕卜化于行。(三)学情分析(1) 认知水平与心理特点七年级学生正处于青春期,是生理和心理急剧变化的关键时期,自我意识不 断增强,逆反心理更加强烈,情绪波动较大。
二、单元分析( 一) 课标要求本单元体现 2022 年版课程标准的课程理念,以立德树人为根本任务、遵 循育人规律和学生成长规律、以社会发展和学生生活为基础,在学生亲近社 会、了解社会的基础上培养政治认同、道德修养、法治观念、健全人格、责 任意识。第一课对应 2022 版课程内容生命安全与健康部分:理解不同的社会角色,形成亲社会行为。能正确 认识和处理自己和同学、朋友的关系,在团队活动中增强合作精神。做文明 的社会成员;中华优秀传统文化教育:感悟天下兴亡、匹夫有责的担当意识,厚植爱国 主义情怀。第二课对应 2022 版课程内容生命安全与健康:客观认识和对待自己,形成正确的自我认同,提高自 我管理能力;法治教育:辨别媒体中的不良信息,了解网络环境中如何保护未成年人 隐私等合法权益。
一、单项选择题1.违法行为是指出于过错违法法律、法规的规定,危害社会的行为。下列违法行 为属于行政违法行为的有 ( )①欠债不还 ②谎报险情 ③殴打他人 ④故意杀人A.①② B.②③ C.①③ D.③④2.一般违法行为和犯罪的共同点是 ( )A.都违反了民事法律 B.都要受到刑罚处罚C.承担相同法律责任 D.都具有社会危害性3.“人生不能越界,底线必须坚守”。这句话说明人们行为的底线是 ( )A.守诚信 B.讲道德 C.不违法 D.懂礼仪4.犯罪的最本质特征是 ( )A.严重社会危害性 B.刑事违法性C.应受刑罚处罚性 D.触犯法律性 5.初中生小辉因沉迷网络游戏,经常偷父母的钱。后来发展为盗窃,走上了违法犯罪的道路。这告诉我们 ( )①不良行为必然会发展成违法犯罪行为②网络游戏有害健康,我们应远离网络③预防违法犯罪需要强化防微杜渐意识④要理性参与网络生活,做网络的主人A.①② B.②③ C.①③ D.③④
(2) 厦门经济特区成立40年来,在各项事业上都实现历史性跨越和突破, 为国家建设做出重要贡献。 厦门的发展表明当代中国最鲜明的特色是( )A.创新发展 B.经济建设 C.可持续发展 D.改革开放(3) 下列选择中,有利于解决我国当前社会主要矛盾的是( )①以经济建设为中心,解放发展生产力②坚持全面深化改革,实施创新驱动发展③推进城乡一体化发展,实现区域同步发展④兜住民生底线、补齐民生短板、办好民生实事A.①②③ B.①②④ C.①③④ D.②③④(4) 2021是 “十四五” 的开局之年。这一年,我国的战略科技力量发展加 快,改革开放推向纵深,民生得到有力和有效的保障,生态文明建设持续推进,┉┉ 。下列时事与此描述相符合的有 ( )①举行第四届中国国际进口博览会②退休人员的基本养老金实现17连涨③正式提出2030碳达峰和2060碳中和战略目标④成功举办24届北京冬奥会和13届北京冬残奥会A.①②③ B.①②④ C.①③④ D.②③④A.治国有常,而利民为本 B.民相亲在于心相通C.君远相知,不道云海深 D.人而无信,不知其可也
【作业分析】本题考查创新改变生活。防雨神器自动收晾衣服的灵感来源是下 雨忘记收衣服被批评,体现创新是来源于生活、来源于实践。“智能晴雨棚”打 破了传统的只能晾衣服的常规。而由教材内容可知,创新是改革开放的生命, 改革在不断创新中提升发展品质,所以②错误;故本题选 C2. (改编) 利用“安康码”自动定位,即可监测附近新冠肺炎感染病例发病点; 通过输入自己的手机号码,即可通过“通信大数据卡”判断自己是否到访过高 危地区;通过皖事通 APP“密接人员自查”即可查询自己是否曾与新冠肺炎感染 患者接触……疫情发生以来,大数据、健康码、无人机、机器人、测温仪等众 多科技创新成果纷纷登场,助力疫情防控,提高了抗击疫情的精准化水平。这 表明 ( )①标志着我国已经成为科技强国②实施创新驱动发展战略成效显著③创新应成为国家发展进步的中心工作④创新的目的是增进人类福祉,让生活更美好A.①② B.②③ C.①④ D.②④【评价实施主体】教师【评价标准】D【作业分析】本题考查科技创新改变生活中创新的重要性。我国现在还不是科 技强国,但科技自主创新能力不断增强,所以①说法错误。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。