(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
[活动准备] 1、酒精灯、烧杯、玻璃片、三角架、火柴。2、雨的形成课件 [活动过程] 一、播放雨的形成课件,引导幼儿听雨声,看雨景。 小朋友们,听听这奇妙的声音,问:这是什么声音?(幼儿:雨声) 看电脑动画,问:这是什么景象?(幼儿:下雨) 雨从哪里来? 幼儿:从天上。 师:天上为什么会下雨? 幼儿:因为天上有云彩幼儿:因为有乌云
【活动目标】1、发展幼儿的观察、记录能力,体验探索的乐趣。2、引导幼儿在好奇心和求知欲的驱动下探索操作、初步理解物体的溶化速度与物体的形状、大小以及水的温度、是否搅拌有关系,并能用自己的语言进行表达。【活动准备】 杯子、面糖、砂糖、冰糖、小块糖、果珍、一次性纸杯、碟子、热水、凉水、记录表、笔若干。【活动重难点】 在实验中探索、理解物体的溶化速度与物体的形状、大小以及水的温度、是否搅拌等因素有关系。【活动流程】 (一)猜测和假设: 教师出示各种不同的物品(石子、棉花、各种糖、植物种子等等)。幼儿猜测:哪些物品放进水里能化,哪些物品放进水里不化? 幼儿自由交流讨论后进行分类:能溶化的一组,不能溶化的一组。 提出问题:如果把这些能溶化的物品放到水里,哪些化得快、哪些化得慢?怎样做能让它化得快一些呢?导入课题。
活动准备:1、不同型号的电池若干; 2、钟表、手电、电动玩具、录音机、手机等; 3、记录单;活动进行: 1、老师介绍活动任务要求: * 第一个任务是;用老师准备的电池,让钟表走起来,让手电筒亮起来;让玩具动起来。 * 第二个任务是:在安装电池的过程中,让幼儿发现、观察、思考:电池上有什么小秘密?你是怎样安装电池的?找一找看安装电池有没有小窍门,好办法。 2、介绍记录单,鼓励幼儿把安装电池的方法,用自己的方式去记录。 提示:记录表上有个X,√?幼儿也可以自己画笑脸、哭脸等。 3、介绍活动一共分四桌,幼儿可以选择喜欢的物品去操作。 4、幼儿动手操作,老师观察、指导幼儿活动情况。指导重点:(1)电池上有什么标记?电池两头一样吗?你发现了什么小秘密?(2)安装时电池鼓的一端顶在哪儿?平的一端放在哪儿?(3)小钟表、手电筒、电动玩具等在安装电池的地方有什么标记?有没有和电池一样的标记?(4)你为什么选择这个电池?你知道你装的是几号电池吗?(5)幼儿的记录情况。 5、帮助幼儿总结归纳电池的一般常识和安装电池的一些方法。(1)老师检查幼儿第一项任务完成的情况:让钟表走起来,让手电筒亮起来;让玩具动起来。
2、发展分析、比较能力,激发幼儿观察大自然变化的兴趣。准备:课前教幼儿认识一些常见的树叶。收集一些树叶。过程:一、初步形成常绿树、落叶树的概念。每组一篮树叶,小朋友观察比较。这些是什么树叶?比一比,他们有什么不同?
2、 培养幼儿主动学习、创造思考、解决问题的能力。3、 能和同伴友好合作,共同协商完成操作。4、 培养幼儿良好的操作习惯。活动重点和难点:发展幼儿组合构建的能力。活动准备:教具 色块卡、无色鱼五条、大操作卡两张、 学具 每人红黄蓝方块各五块、操作卡两张活动过程:一、送方块宝宝给小朋友玩,让幼儿尝试一下组合构建的乐趣。(培养幼儿主动学习的能力)教:快慢轻重的拍手游戏集中孩子的注意力,活跃课堂气氛。孩子们,你们好,今天陈老师带来了许多方块宝宝,这些方块宝宝可有趣了,瞧,我把它一个一个的接起来,就可以变成一个个图形宝宝呢!看我变成这个图形,再接一块,我又变成了另外的一图形。孩子们,你们也来试试吧,看谁变得又多又快。(每桌发一篮方块宝宝)观察幼儿的构建情况,询问幼儿所构建的物品的名称,向全班幼儿展示构建新颖的作品。
重点:了解接龙游戏的规律,并能运用比较、对应的经验合作制作接龙卡。难点:1.孩子对前后卡片的界限区分。成因是接龙卡本身有两小部分所组成,容易会造成孩子辨别卡片上的混淆。2.操作中的前后推理。成因是由于幼儿的逆向思维发展尚不成熟,容易被附近一个已知数所误导。解决策略:1.逐步化解法:借助双色的卡片做教具,以层层递进的方式从顺向推理向逆向推理逐步过渡。2.资源共享法:以小组合作形式开展操作活动,能以兵兵互教的形式化解补缺的难点,达到资源共享。活动目标:1.了解接龙游戏的规律,并能运用比较、对应的经验合作制作接龙卡。 2.尝试用简洁语言介绍和交流自己的操作结果,能运用以往的数学经验表明意思。
2、 培养幼儿团结、协作、机智的品质。活动准备:自制大棋谱一张、骰子、操作卡、笔、投影仪等活动过程:一、引起兴趣小朋友们都爱下象棋,那你们下过旅行棋吗?我们一起来下棋,来比赛,好吗?二、讲解示范行走规则幼儿分组,为COCO队和DUDU队。掷骰子,按点子数前行。每过一个关口,必须答出其中的题目,答对了继续前进,答错了则后退。两队轮流进行,依次闯过各个关口。看哪一队先到目的地。
2、在游戏中进一步了解10以内三个数字之间的关系。准备:萝卜10根(白萝卜1根、胡萝卜9根),茄子10根(2根粗茄子,8根细茄子),黄瓜10根(表皮光滑的短黄瓜3根,表皮有刺的长黄瓜7根),番茄10个(大番茄4个,圣女果6个),辣椒10个(黄、绿灯笼辣椒各5个);5个分类筐,记录纸,记号笔,计时器,青菜奖励。1、蔬菜分类 导语:我这有一些蔬菜,请你们把它送回家。(分类框放在地上,蔬菜放两边的矮桌子上)2、观察不同特征,用不同的数字表示。 提问:你们把那么多的蔬菜分成了几家?哪几家?(开始认读竖形表上的字,翻出数字) 萝卜有几个?茄子有几个? 小结:原来按照蔬菜种类的不同分成了萝卜、茄子、黄瓜、番茄和辣椒5种,每种蔬菜的总数都是10个。 提问:再来看看每种蔬菜中有什么不一样的地方?(幼儿任意挑选一种蔬菜进行表述)
2、 初步感知5以内数的组成,初步理解加减法运算。3、 培养幼儿积极参与活动的兴趣。活动准备:1、 已参观过水果店、超市。2、 几种水果玩具(数量为幼儿4倍)、货架、代币券(数字1---5)。活动过程:1、 教师和幼儿共同布置“水果店”。让幼儿确定水果的品种,货架的摆放位置。2、 幼儿分组商议水果价格,并给每个水果制作价目标签。
2.鼓励幼儿用(目测、计量、数数、折叠)等多种方法大胆去尝试、探索二等份的多种分法。3.引导幼儿大胆讲述操作过程和结果。活动材料;教具:天线宝宝两个、蛋糕一块、二等份图卡10张学具:长方形纸、剪刀、尺、毛线、包装纸;吸管、圆片、三角形、正方形;硬币、蚕豆、雪花片、纽扣、小碗;量杯6个、天平、蛋糕、番茄、豆腐干、刀子、菜板、橡皮泥等。活动过程:1.幼儿将长方形纸进行二等份。 (1)班上请来了两位小客人,看看是谁?它们还带来了最喜欢吃的蛋糕,可是只有一块蛋糕,两人都想吃,怎么办?(2)请一位幼儿动手试一试,有什么办法知道这两块一样大呢?(重叠)(3)教师小结:把蛋糕分成一样大的两份,这种方法叫二等份。想想蛋糕除了这样分,还有不一样的分法吗?每位小朋友面前都有一张像蛋糕一样的长方形纸,请你想出和别人不同的方法进行二等份?(4)幼儿动手操作,展示幼儿分法。(边与边对折、对角折)请幼儿比较一下,分出来的图形和原来的图形有什么变化?(5)教师小结:小朋友用了对折、对角折对长方形纸进行了二等份,把它分成了两份一样大的图形。
活动目标: 1、通过儿歌学习把毛巾打开,把脸上的部位都洗到的正确方法,把耳朵、脖子两个部位也洗到。2、提高幼儿自我服务意识和能力,愿意做力所能及的事。 活动准备:小兔、小象玩具、儿歌、自编故事 活动过程: 一、出示手偶,引起幼儿兴趣 看,谁来啦?向小兔、小象问好 二、通过故事进行活动1、讲故事(一) (1)提问:a怎样把脸洗干净?大家讨论b我们要做好什么准备工作?
【活动目标】1、让幼儿在探索中了解火箭升天的基本原理,感受科学的神奇。2、引导幼儿在简单的操作中,初步了解物体的反作用力,体会操作的乐趣。3、培养幼儿的动手操作能力,激发幼儿的科学兴趣和探究欲望。【活动准备】神七升天实录、气球若干、放烟花图片、穿天猴(鞭炮的一种)两个。【活动过程】 一、观看升天扣人心弦1、师生一起观看“神州七号”升天的动人场面,认真观察神七的外形特点和发射方法。2、自由讨论问题“火箭为什么能上天?” (分析:导入开门见山,通过观看神七升天,让幼儿又自主性的提出了这个问题,更加激发了幼儿主动探究的兴趣。)二、探索原理动手操作1、在生活中找现象 教师展示放烟花图片,让幼儿观察,提出问题: 过新年时,小朋友知道烟花是怎样飞上天的吗? 教师户外燃放穿天猴,请幼儿观察穿天猴升天现象。 一起说一说:“此现象和火箭升天有什么相似的地方吗?”2、在操作中找答案 给幼儿每人一个气球,引导幼儿吹上气,把口捏紧朝下,然后快速松手,气球会发生什么现象?(气球会一边向后喷气,一边向天空飞去。) 师:“气球吹的大和气球吹的小,快速松手后,它们飞的一样高吗?”“当气球喷完气后会怎样呢?” (分析:选择幼儿生活感兴趣、常见的类似火箭升天的现象让幼儿观察,拉进了幼儿与科学的距离,让幼儿觉得科学并不遥远,非常亲切。操作气球飞天,简单易行,让幼儿看小现象,懂大道理。)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。