二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
咨询引领顶层设计能力持续强化。为国家电网公司互联网部、发策部、设备部、营销部、基建部、审计部、财务部、企协等部门提供技术支持服务,并参与电网数字化咨询与顶层设计,20**年公司获得国网总部技术服务费合同额3270万元,连续两年在集团总部技术服务费中名列前茅。稳步开展企业中台能力提升、总部能源大数据中心、新兴产业升级、新业务新业态模式研究、项目中台、网上电网、PMIS3.0及电网资源中台、数字化审计三期等顶层设计,开展信息调运检体系设计运营实施等工作,电网数字化咨询设计能力持续强化。承担国网安徽电力信息化架构规划与设计、国网福建电力信息系统架构中台化设计和移动应用顶层设计、国网江苏电力基于数据中台的多源数据综合应用设计、国网山东电力智慧物联体系典型场景设计等一批重点项目,按照国家电网公司“十四五”数字化规划要求,有力支撑各网省公司开展电网数字化转型升级。
一、说教材1.教材简介《综合性学习:遨游汉字王国》是义务课程标准实验教科书小学语文四年级上册第五组安排的一种学习形式。“遨游汉字王国”是由“汉字真有趣”和“我爱你,汉字”两个板块组成。“汉字真有趣”分别从字谜、有趣的谐音、汉字小笑话、汉字的起源等方面揭示了汉字的神奇性和趣味性。“我爱你,汉字”分别从汉字的演变、错别字的危害、汉字的书法艺术、汉字的魅力等方面,让学生了解中华汉字的灿烂文化。2.教学目标综合性学习是新课标对学生综合实践性学习活动重视的具体体现。它相对于学生来说是一种新的教学形式。通过本组的学习,学生可以了解到汉字历史的悠久,知道汉字记录并承载着中华的文明;同时还让学生清楚地看到汉字在今天同样具有强大的生命力,明白汉语如今在世界上影响的逐步扩大,从而激发学生学习汉字的兴趣和对祖国语言文字的热爱。根据本组教学的要求,结合实践活动的特点,联系学生的实际,我在摸索中制定了第一课时的教学目标:a、让学生感受汉字的音美、形美、意美。b、激发起学生探究汉字的欲望。c、让学生能根据兴趣爱好科学合理分组、分工,并能顺利开展活动。3.教学重点:让学生感受汉字的奇、趣、美,激发起学生的探知欲。
通过观看祖国变化的图片,了解祖国之所以有今天伟大的成就是因为有责任心的中国人凝聚在一起的爱国力量,是每个有责任心的人在自己的岗位上尽心尽力,出色的完成自己的任务。活动一:学生观看表现祖国各行各业奋进的演示文稿。活动二:观看建国六十周年国庆阅兵仪式的片断。活动三:学生代表二人交流:感受到的祖国的变化。活动四:学生交流:自己的感受。(二)理解责任的含义,认识不负责任的危害活动一:知道责任的含义:责任:就是分内应做的事情。也就是承担应当承担的任务,完成应当完成的使命,做好应当做好的工作。认真负责也是爱祖国的表现。责任感就是自觉地把分内的事做好的心情。活动二:通过观看我国航天领域的伟大成就,体验宇航员奋力拼搏,促进航天技术飞速发展的成功喜悦。活动三:通过故事《一个小数点酿成的悲剧》领悟出责任心的重要。了解不负责任的危害。活动四:学生讲出自己身边不负责任的事例。活动五:学生分享自己收获和感受。
通过角色朗读,让学生入情入境,进入人物的内心,感受周恩来第一次听到“中华不振”时疑惑的心理,进而理解周恩来后来为什么会不听伯父的话,闯入租界,为第二部分的教学做下铺垫。
各位评委,上午好!我进今天要说课的内容是:中班绘画活动《花孔雀》。孔雀是孩子生活中较为熟悉的一种鸟类,它充满了丰富的艺术美感,又易于孩子观察、体验、创作和欣赏,适应了《纲要》对艺术活动提出的“引导幼儿接触生活中美好的人、事、物,丰富他们的感性经验和审美情趣,激发他们表现美、创造美的情趣。为此,我设计了这节装饰画活动。让幼儿通过观察与发现,在探索创作过程中,充分发挥幼儿的思维能力和动手能力。
教育活动的目标是教育活动的起点和归宿,对活动起着导向作用。新《纲要》中指出:目标要注重全面性,要为幼儿一生的发展打好基础。根据我们青豆班孩子的实际情况和年龄特点,我确立了包含情感、态度、能力、知识、技能等方面的目标:1、通过玩玩、说说、做做的活动,初步感知面粉外部及内部的特性及各种类型的面粉制品。2、激发幼儿动手操作的兴趣,巩固捏、团、搓、压等技能培养幼儿发散性思维。3、激发幼儿喜欢吃面粉制品,及爱惜粮食的情感。根据目标,我把活动的重点定位于:初步感知面粉外部及各种类型的面粉制品。难点是:尝试用加水的方法把面粉变成面团感知面粉内部粘的特性。
中班幼儿随着年龄的增长,他们的思维已由直觉行动思维过渡到具体形象思维。他们喜欢观察喜欢表现,还喜欢自己动手操作。因此,我在本次活动中,我以幼儿自己操作自己体验的形式贯穿整个活动。设置适合中班年龄特点的“游戏”形式,把幼儿的注意力引到我的课题中。并在活动中,以教师自制的小树苗,为幼儿提供大量实物,让幼儿以操作贯穿始终。让幼儿在活动中玩,玩中说,玩中做,充分调动起他们学习的主动性、积极性与创造性,真正发挥教与学主动作用。目前,在科学教育方法中,应注意内容的兴趣性与生成性。使幼儿能对感兴趣的东西学得积极主动,效果好。孩子天生爱探索,对许多事物感兴趣。教师要把教育的出发点从教材转向幼儿,利用幼儿感兴趣的事物扩展成幼儿教学教育的内容,生成教育活动。因此,我在活动中,为幼儿准备了大量的废旧物,让幼儿在游戏和延伸活动中,通过自身的操作活动,达到玩中学,玩中做的目的。从而真正发挥了孩子的主体地位和教师的主导作用。在操作活动中,我还注意让幼儿在动手、动口的操作活动中达到活动的目标。
《电动玩具》是属于中班的科学活动,选自《多元整合幼儿园活动课程》,科学活动的主要目的是让幼儿能运用各种感观,动手动脑探究问题以及培养幼儿对周围事物现象感兴趣,有好奇心和求知欲。本次活动要求幼儿了解电池的作用以及培养其探索的兴趣,教材在编写上注意幼儿的实践操作能力,一般来说,一个四岁的孩子对理论知识较难明白,但如果经过自己动手操作得出的结论往往比老师的讲述要深刻得多,因此我把本次活动的目标定为:1、通过让幼儿动手操作去了解电池的作用并学会正确使用电池。2、在操作交流的过程中,让幼儿学会主动利用语言向人表达。3、培养幼儿积极探索事物的奥妙及时发现问题并寻求答案。前面两顶是本次活动的重点,后面一项是本活动的难点。
中班幼儿会对水本身感兴趣,但他们的兴趣只是停留在玩水上,科学活动《水不见了》的主要目的是让幼儿通过实验、操作自己探索“水不见了”的原因。培养幼儿对周围事物现象感兴趣,有好奇心和求知欲。本次活动要求幼儿了解生活中有些东西是容易吸水的,有些东西不容易吸水,能吸水的东西在吸饱水后(饱和后)也就不能吸水了。一般来说,孩子对理论知识较难明白,但如果经过自己动手操作得出的结论往往比老师的讲述要深刻得多,因此我们把本次活动的目标定为:1、通过动手操作发现生活中有些东西是容易吸水的,有些东西不容易吸水,能吸水的东西在吸饱水后(饱和后)也就不能吸水了。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。