二、教学目标1、知识与技能:使学生经历探索加法交换律的过程,理解并掌握加法交换律,初步感知加法交换律的价值,发展应用意识。2、数学思考:使学生在学习用符号、字母表示加法交换律的过程中,初步发展学生的符号感,逐步提高归纳、推理的抽象思维能力。3、解决问题:运用加法交换律的思想探索其他运算中的交换律。4、情感与态度:使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。三、教学重点:理解并运用加法交换律。四、教学难点:在学生已有知识经验的基础上引导学生归纳出加法交换律。五、教学关键:引导学生运用各种不同的表达方法理解加法交换律的思想。六、教学过程(一)情境,形成问题1、谈话:同学们喜欢运动吗?你最喜欢哪项体育运动?李叔叔是一个自行车旅行爱好者,咱们一起去了解一下李叔叔的情况。1、出示李叔叔骑车旅行的情境图。仔细观察这幅图,你从图上知道哪些信息?
(2)圆锥的体积教学内容:第25~26页,例2、例3及练习四的第3~8题。教学目的:1、 通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。2、 借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。3、 通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。教学重点:掌握圆锥体积的计算公式。教学难点:正确探索出圆锥体积和圆柱体积之间的关系。教学过程:一、复习1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵积不含x2项,也不含x项,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系数a、b的值分别是94,32.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础
解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xym2,绿化的面积是35x×34y=920xy(m2),则剩下的面积是xy-920xy=1120xy(m2).方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
(一) 单元质量检测内容一、 单项选择题1.小林爸爸承包了村里的一个鱼塘, 需要签订一份承包协议。他爸爸准备去律师 事务所花钱让律师拟订一份承包协议, 他妈妈却说花钱浪费, 自己随便写写就 可以了。这说明( )A.小林妈妈勤俭节约B.小林爸爸小题大做,实属多此一举C.小林爸爸法治观念强,懂得用法律保护自己D.小林父母性格不和,观点有分歧2. 《民法典》规定: 父母对未成年子女负有抚养、教育和保护的义务。《义务教 育法》规定: 社会组织和个人应当为适龄儿童、少年接受义务教育创造良好的 环境。《环境保护法》规定:禁止引进不符合我国环境保护规定要求的技术和 设备。这说明( )A.未成年人的教育问题很重要B.环境保护要求很严格C.生活方方面面都需要法律D.国家重视民生
(四) 作业分析与设计意图作业的素材选择多元化,有漫画、图表等。设问指向明确,注重内容的基础性,应 用性。通过作业设计与实施,可以引导学生关注法律和社会,认识到推进依法治国,建设 社会主义法治国家的意义,增强自己的法律意识和提高依法办事的能力。作业2( 一) 作业内容绘制《与法同行,做守法小公民》手抄报一、活动背景学习了《我们与法律同行》的内容后,同学们充满了力量,更加坚定了建设 社会主义现代化国家的信心。某中学七年级 (1) 班班委会拟组织一次《与法同 行,做守法小公民》手抄报比赛,邀请你参加并绘制一份手抄报。二、活动步骤1.班委会明确活动主题,并对板面设计和内容提出具体要求。 2.学生收集资料,设计版面,组织内容,绘制手抄报。 3.全班交流分享。4.班委会组织评奖,将优秀作品张贴在班级宣传栏展示。
11.情境探究。成长路上,学无止境。初中三年的学习生活,不仅使我们的知识得到丰富,而且也使我们的心理品质得到磨炼,在生命的旅途中留下 了一串串难忘的印记。根据所学知识,对下列情景进行探究。情景一:面对考试,感到压力很大,心里非常焦虑。对策: 。情景二:数学考试时,小林因为紧张导致许多原本会做的题目做不出 来,就在考场上大哭起来。之后的几天,他吃不下饭、睡不着觉,精 神恍惚,生病了……小林的这种情绪体现了青春期情绪的 特点。 小林的不良情绪会 。 12.阅读材料,体验情绪。材料一 近年来,由于生活、工作压力太大,有一些大公司陆续为员工 增添了一间专门的办公室。这间办公室中设置了真人大小的充气人, 上面标有高层领导的姓名以示区分,员工可随意对其进行拳打脚踢, 并且不用承担任何后果。
2.内容内在逻辑本单元作为法律版块的起始单元,以我国建设社会主义法治国家为背景,带 领学生了解社会的法治进程,初步感受法律与生活密不可分,理解法律对生活的 保障作用,感受法律对青少年自身的关爱,引导学生自觉尊崇法律,激发学生学 习法律的责任感,学会依法办事,同时青少年们要积极适应法治时代的要求,树 立法律信仰,努力成为法治中国建设的参与者和推动者。这就需要青少年不断学 习、 内化法律知识,努力为法治中国建设做出自己的贡献。(三) 学情分析未成年人的生理、心理发展都不成熟,辨别是非的能力不强,法制观淡薄,容易受到不良因素的影响,甚至会走上违法犯罪的道路,未成年人违法犯罪 现象是我国面临的一个严峻的社会问题; 受不良社会风气的影响,以及中小学法 治教育需要进一步强化的现状影响,中小学生规则意识和法律意识淡薄。因此, 必须要增强 全民法治观推进法治社会建设,把法治教育纳入国民教育体系,从青 少年抓起,强化规则意识,倡导契约精神,弘扬公序良俗。
考点:对未成年人实施特殊保护的作用解析:A.B杜绝、不容许、说法太过绝对,排除。 D只看到互联网的消极作用,没 看到互联网的积极作用,排除。故该题应选C。2.答案:C考点:保护未成年人的专门法律解析:A. B说法与题意不符,排除。 D.就不会、太过绝对,排除。《未成年人保 护法》是保护未成年人的专门法律,给予未成年人特殊保护,故该题应选C。3. 答案:B考点:保护未成年人的两部专门法律名称。解析: A.C.D与题意不符,故该题应选B。4. 答案:A考点:学校保护。解析:对学生进行安全教育是学校保护对未成年人特殊保护的表现。 ①②③说法 正确。 ④消除、说法太过绝对,排除。故该题应选A。5. 答案:D考点:未成年人为什么需要特殊保护。解析:①②③④说法正确,故该题应选D。二、 非选择题⑴参考答案:社会保护点拨:从保护的表现和主体判断出是未成年人六道防线中的社会保护。
10.阅读材料,回答问题。材料一:近年来,公路上经常出现“路怒族” ,只要看到别人抢道、开车慢、不让道等他们就会 骂人,而且骂得很难听,甚至大打出手。材料二:在新型冠状病毒肺炎疫情防控期间,2020年2月1 日贵州省贵阳市的某商场,一位打扮靓 丽的年轻女子要进入商场时不戴口罩,被商场门口执勤的店员劝阻,要求戴上口罩才能进入商场,该 女子不但不听劝告,而是嗤鼻一笑,不以为然。随后就绕开工作人员打算进入商场,4名工作人员随 后上前阻止,该女子竟然要强行闯入商场,甚至对商场工作人员拳脚相加,随后商场工作人员报警。(1) 结合材料说说,情绪受哪些因素的影响?(2) 根据材料谈谈在生活中如何管理愤怒?11.【东东的日记】下面是东东的“微日记”片段,记录着成长的点滴,与你分享。
6.公平是人类历史上一个永恒的主题。现实生活中我们也常常会遇到是否公平、如何 做到公平的问题。下列对公平理解正确的是( )A.公平就是多享受权利,少履行义务 B.公平就是绝对公平C.公平是一种较好的机遇和命运 D.公平意味着处理事情要合情合理7.2021年全国“两会”期间,“两会”特别节目《公平正义新时代》以案说法的同时, 还特别着重展示各部门如何履行职责守护社会公平正义。之所以关注公平正义,是因 为 ( )①正义是社会和谐的基本条件,能够为社会发展注入不竭的动力②公平是个人生存和发展的重要保障,是社会稳定和进步的重要基础③正义是社会文明的尺度,体现了人们对美好社会的期待和追求④公平的社会能为所有人提供同等的权利,从而激发自身潜能,提高工作效率 A .①②③ B .②③④ C .①③④ D .①②④8.教育部通知: 2018年全面取消体育特长生、中学生学科奥林匹克竞赛、科技类竞赛、 省级优秀学生、思想政治品德有突出事迹等全国性高考加分项目,这一规定 ( )
①坚持依法行政,维护公平正义②严格遵循诉讼程序,加强立法③司法过程和结果都要合法、公正④坚持以事实为根据,以法律为准绳A.②④ B.②③ C.③④ D.①②3.疫情防控期间,某地检察院充分发挥检察职能,与公安机关等部门加强协作, 提前介入涉疫案件侦查,切实保障人民群众合法权益,全力维护疫情期间社会稳 定。由此可见 ( )①人民检察院是我国的法律监督机关②公安机关是我国的审判机关③公平正义需要法治的保障④人民检察院接受政府的领导和约束A.①② B.①③ C.②③ D.②④(二) 非选择题4. 探究与分享:结合所学知识,与同学讨论探究,回答下列问题。案例反思:2017 年 4 月 20 日,最高人民法院、中央电视台联合公布 2016 年推动法治进程十大案件评选结果,聂某被宣判无罪案等十大案件入选。1995 年 3 月,石家庄中院一审判处聂某死刑,同时判处赔偿受害人家属丧葬费等计 2000 元。1995 年 4 月 27 日,聂某被执行死刑。2016 年 12 月 2 日,最高人民法 院第二巡回法庭宣告撤销原审判决,改判聂某无罪。2017 年 3 月,聂某家属获 268.13991 万元国家赔偿。思考:如何才能避免这种错案的发生?
作业设计是老师布置给学生学习任务的设计,是教学设计的有机组 成部分。它以学习目标为起点,以学习内容为依托,以学习评价为保障, 以发展学生素养为最高标准。作业设计的要素包括作业内容、时间要求、 设计意图、作业分析及作业评价。我们八年级道德与法治组将单元作业 设计为三部分,第一部分是课时作业,本部分通过设置习题和活动,达 道巩固知识立德树人的目标。第二部分是单元作业,主要是为了检测学 生是否达到了单元学习目标,这部分重点考查学生对基础知识的掌握情 况。第三部分是特色作业,增强家国情怀,提高主人翁意识,更加注重 学生的能力提升。进入八年级,知识内容不断加深,同学们在学习方面面临着更大的 挑战,一部分学生因此产生畏难情绪,感觉学习吃力,如果在作业设置 方面,设置的作业量过大或过难,容易让学生彻底失去学习的兴趣,从 而放弃学习。
(一) 课标要求本单元所依据的课程标准是道德与法治课程标准 (2022年版) :第 四部分课程内容第四学段 (7-9年级) 国情教育中的:1. “了解世界正处于百年未有之大变局 ,具有初步的国际视野 , 了 解全人类共同价值的内涵 ,领悟构建人类命运共同体的意义 。 ”2. “ 以 “于变局中开新局 ”为议题 ,结合实例分析如何应对人类共 同面对的重大挑战 ,认识中国的发展离不开世界 ,世界的繁荣也需要中 国 。 ”3. “通过与中华优秀文化传统 、革命传统 、 国情教育等方面的关联 ,从真实的社会情境角度进行道德教育 ,强化学生的道德体验和道德实 践 , 旨在引导学生正确认识 自 己 , 以及个人与家庭 、他人 、社会 、 国家 和人类文明的关系 , 了解国家发展和世界发展大势 ,增强社会责任感和 担当意识 ,立志做社会主义建设者和接班人 。 ”
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。