青年是民族的希望,是国家的栋梁。回首往事,第一次世界大战结束后,参战各国于巴黎签订战胜国条约,中国作为战胜国本应获得权益与地位,帝国主义却将日本非法侵占的山东领土转让给其他国家。这一消息传入国内后,举国震惊,国人愤怒地控诉着一切。北京大学的青年学子义愤填膺,争相,上街游行,高喊还我山东,废除二十一条,拒绝在合约上签字。广大青年奔走城中游行,放火焚烧卖国贼曹汝霖的住宅,给北洋政府施压,为此北洋军阀逮捕了百余名学生,此举更是激起全国人民的怒火,全国青年,工人罢工,在全国人民的怒火下,北洋政府不得不释放关押的学生,并拒绝在条约上签字,史称五四运动。这是一次伟大的胜利,在这场运动中,进步青年的五四精神:爱国,拼搏,与反抗,都值得被永远传唱下去,进步青年们不畏强权的抗争精神推动着社会变革,负担着民族兴旺的重任。
一个国家的繁荣与发展离不 开人才。人才,展开来说就是一个人的才干,一个人的才干就是这个人综合能力的体现。国家的发展离不 开甘于奉献,肯于吃苦的人才。一个国家惟独 人才肯做 任做,一心一意的为国家做奉献,这个人,才干有 所成就;反之,若这个国家的人才放着自己的才华不 去使用,不 为国家做奉献,那么他又和一般人有 什么区别呢?伟大的詹天佑,在 面对外国人的置疑与讥笑,坚持自己带领人去修筑铁路。天天早起晚睡,日复一日,他都不 知道疲乏的坚持,从没有放弃。最终,他最终修筑了 历史上第一个由 中国人修建的铁路,令我们十分自傲,也令外国人十分吃惊,他向外国人证明了 我们的意志和实力。
对我国政治安全、国土安全、军事安全、经济安全、文化安全、社会安全、科技安全、信息安全、生态安全、资源安全、核安全11个领域的国家安全进行了明确的规定,所保护的对象涵盖了国家安全方方面面;既包括军事、政治等传统安全,又包括经济、文化、科技等非传统安全。当前,我国面临着对外维护国家主权、安全、发展利益,对内维护政治安全和社会稳定的双重压力,各种可以预见和难以预见的风险因素明显增多,非传统领域安全日益凸显。新国安法以国家生存和发展安全为最基本前提,把维护国家安全是国家的头等大事,主动适应了我国维护国家安全的新形势新要求,是一部真正意义上的国家安全法。
二、认真组织开展好安全教育活动。要确实上好“开学安全教育第一课”,要进一步推进安全教育进课堂,根据我商业幼儿园安全教育工作特点,切实将公共安全教育有关知识落实到课堂,制定安全教育计划,精心设计安全教育方案,精选安全教育的内容、主题和载体,落实安全教育教师、课时、教案,突出师生全员、全过程参与。三、认真开展安全隐患排查和整治。要严格执行《睢县教育系统安稳工作日志》制度,按照“谁主管、谁负责;谁主办、谁负责”的原则,我商业幼儿园进行一次拉网式的全面大排查,排查结果是全方位、满覆盖,特别是对学校教室、宿舍、食堂、厕所、水电气线路、体育活动器材等教育教学设施和生活辅助设施要进行全面细致的安全检查,对发现的问题已认真整改,对发现的隐患已及时排除。
1、一场启动仪式。举行英塘小学第三个“学校交通和防溺水安全教育周”教育周启动仪式。2、一个公益广告。各年段各班都必须抽出时间,组织学生在班级或多媒体教室观看防溺水的动漫电影。并可以组织学生写好观后感。3、一次专题教育。设置警示牌、宣传栏和LED屏。利用在校门口显眼位置设置警示牌和LED屏滚动交通和防溺水宣传教育标语。4、一次学生交通安全专项整治。对学生上下学交通方式进行全面调查。
针对日常生活中的种种不安全,我们必须时刻防范着,因此安全的意识是十分重要的,使我们跨出自我保护的第一步,但是仅有的安全的意识是不够的,我们还需要学会正确的处理方式。这样才能远离危机,培养我们的抗拒,各种危险诱惑的自制力是我们必备的防范武器,我们在生活中一定要注意安全,多少社会新闻和实际案例都充分说明到安全并非易事。远离恐慌,拒绝暴力,真正学会自我保护是每个人必备的基本能力,安全,安全,安全是我们人生中最大的幸福,只有在安全的前提下我们才能完成他的心愿。当然我们不仅仅要保护好自己,我们也也要尽已所能的保护好我们祖国,我们的家园,我们的亲人。
一个国家的繁荣与发展离不 开人才。人才,展开来说就是一个人的才干,一个人的才干就是这个人综合能力的体现。国家的发展离不 开甘于奉献,肯于吃苦的人才。一个国家惟独 人才肯做 任做,一心一意的为国家做奉献,这个人,才干有 所成就;反之,若这个国家的人才放着自己的才华不 去使用,不 为国家做奉献,那么他又和一般人有 什么区别呢?伟大的詹天佑,在 面对外国人的置疑与讥笑,坚持自己带领人去修筑铁路。天天早起晚睡,日复一日,他都不 知道疲乏的坚持,从没有放弃。最终,他最终修筑了 历史上第一个由 中国人修建的铁路,令我们十分自傲,也令外国人十分吃惊,他向外国人证明了 我们的意志和实力。
国家安全一切为了人民、一切依靠人民,没有人是“局外人”和“旁观者”,提升全民意识、动员全民力量、凝聚全民共识才是防范化解各类安全风险的“铜墙铁壁”。几年来,从繁华都市到边境村寨,从校园课堂到社区街道,从各级机关到企事业单位……各地以群众喜闻乐见的形式开展国家安全知识普及和交流,全民国家安全教育渐入佳境,越来越多的人意识到国家安全与社会生活息息相关,全社会国家安全意识水平得到极大提升,全民国家安全责任显著增强。下一步,还要推动国家安全教育工作向深里去、向实里去,进一步筑牢国家安全的群众基础。
曾几何时,过去旧社会的中国任人欺凌,祖辈被人欺悔。当我想到这些时,我的心中就有一种说不出的愤怒。”天下兴亡,匹夫有责”,“国不可一日无防”,屈辱的历史让我们永世难忘。有人说:“抵御外敌,捍卫疆土的英雄是‘一夫当关,万夫莫开’的万里长城!”而我却要说:“我们拥有比万里长城更坚固无比的东西,那就是我们中华儿女的坚定信念!”我们的信念就是国家安定,团结!这个信念是坚不可摧的,是任凭什么现代武器都不能攻破的!如今,我作为一名学生,有这样一个梦;长大后穿着绿色的军装,站立在祖国的边防,做一名捍卫疆土的士兵。或者梦不一定能实现,但我那热爱祖国国土的心是真诚、火热的。
患生于所忽,祸起于细微。历史一再启示我们,没有意识到风险本身就是的风险,越是前景光明,越是要增强忧患意识。当前,在疫情在国内外蔓延的情势下,我国国家安全内涵和外延比历任何时候都要丰富,所覆盖的领域比历任何时候都要宽广,内外因素比历任何时候都要复杂,各种可以预见和难以预见的安全风险挑战前所未有。任何一个领域出现安全问题,都有可能“牵一发而动全身”,影响到国家和民族的发展,乃至每一个人的切身利益。“备豫不虞,为国常道”,我们将每年的4月15日定为全民国家安全教育日,就是为了提醒人们认清国家安全形势、增强危机忧患意识、牢固树立国家安全观念。
一、内容丰富涵盖了国家安全的十一个领域新国家安全法共分七章(84条),即第一章总则;第二章维护国家安全的任务;第三章维护国家安全的职责;第四章国家安全制度;第五章国家安全保障;第六章公民、组织的权利和义务;第七章附则。对我国政治安全、国土安全、军事安全、经济安全、文化安全、社会安全、科技安全、信息安全、生态安全、资源安全、核安全11个领域的国家安全进行了明确的规定,所保护的对象涵盖了国家安全方方面面;既包括军事、政治等传统安全,又包括经济、文化、科技等非传统安全。
一、认真组织开展好安全演练周活动。根据教育部、省教育厅、市教育局要求,开学第一周为安全演练周。我商业幼儿园认真组织开展以“消除火灾隐患,共建平安社区”为主题的消防应急疏散、防暴力、地震等应急演练。演练前要制定详细、周密的演练方案,确定科学的疏散线路和避险场地,合理安排校领导、教职工在演练中的职责,确保师生全员参与。演练时要做好组织管理工作,确保演练活动安全、有效。
五.课堂总结:巴金是现代中国不多的文学大师、思想家之一,他以丰硕的文学成果以及一生坦荡无瑕圣哲般高贵的人品,向世人证明了爱心的价值、真诚的伟大,以及天才的光芒,这位“20世纪中国的良心”,他的名字必将与鲁迅等人一样,长留青史,像北斗一样在天空闪烁!让我们记住这位老人并学习这位老人的不断进取的精神和严于解剖自己灵魂的勇气,铸造一种坦诚真实的人格。六.课外合作探究:狗与“伤痕文学”巴金此文开篇就写艺术家与狗的故事,然后写自己与狗,不光此篇写狗,他在另外的文章中也写到狗,不光巴金如此,反映文革的“伤痕文学”都经常写到狗,你如何看待这一文学现象?1.学生课外阅读“伤痕文学”查阅相关文学评论(6人一组,4人分组从网上和书籍中查阅相关文章,2人分别查阅相关评论)2.课后教师与学生交流并发表有倾向性的意见:
一、存在的主要问题。 1、没有奋发进取的精神,在自己的工作中做得很好,但需要进一步加强。 2、经常为患者考虑的服务意识不足,有时因为自己的心情问题对患者的服务态度不足,需要进一步改善。 3、业务知识不足。工作不积极,业务知识钻研不足,只重视常见病多发病的诊断和治疗,不重视业务知识的全面性,缺乏钻研精神。 4、组织纪律有时松懈,上班时间有时脱岗,下一步改正。 5、上班时间因工作而上网,通过学习教育和深入思考,坚决消除这种事情。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。