一、“创业带动就业”发展态势良好 市越来越的创业者通过政策帮扶,不仅自己成功创业,还带动人就业。近年来,市积极落实创业担保贷款贴息及奖补政策,对符合创业担保贷款申请条件的人员,将申请贷款最高额度提至万元,期限不超过年,并给予财政贴息;对符合条件的小企业,将申请贷款最高额度提至万元,并按规定给予财政贴息;对“贷扶补”本金偿还次数进行调整,由原来的次调整为次。放宽创业带动就业补贴条件,大资金对创业的支持力度;为提高贷款经办效率,依托市人力资源和社会保障局网上服务大厅,通过“互联网+共就业服务息平台”,实现创业者通过手机或互联网即可申办;成功开发市创业担保贷款网上经办系统,于20年在全省率先实施网络申贷。 20年至今,全市共发放创业担保贷款.亿元,扶持人(户),带动(吸纳)就业人数人;发放大学生一次性创业补贴.万元,鼓励和支持名大学生创业。建成省、市级创业孵化平台个,有针对性地对创业者进行扶持和服务,切实提高平台创业孵化能力。同时,建立创业导师库,遴选来自各行各业有丰富创业理论和实践经验的创业导师人,在项目选择、开业指导、市场推广、经营管理等方面为创业者提供创业指导服务。
结合“我们的节日”,组织未成年人参加“学雷锋”做好事、“清明网上祭英烈”等活动;充分利用社区资源,开展“亲子齐阅读、诵读活动”、乒乓球比赛等活动;开展做孩子最好的老师、未成年人生理知识讲座等等一系列活动。实现了“学校、社会、家庭”三结合教育体系,引导未成年人在活动中体验,在体验中成长,提升道德文明层次,引领创文工作显成效。实现了“学校、社会、家庭”三结合教育体系,引导未成年人在活动中体验,在体验中成长,提升道德文明层次,引领创文工作显成效。五、提升人居环境,文明创建工作出实效按照“网格化模式、精细化管理、常态化保持”的思路,在治理环境脏乱差上下真功夫,组建了“三支队伍”(社区干部队伍、社区志愿者队伍、群众志愿者队伍)进行垃圾分类管理和环境卫生集中清理整治。对重点区域,主要路段,实行责任包干,做到分工明确,责任到人。对责任区域卫生死角、牛皮癣、社会治安、乱搭乱建、车辆乱停乱放、衣物乱晒乱挂等现象全面排查和梳理,一项不漏,对存在的问题在规定时间节点认真整改落实。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.2 区间教 学 目 标知识目标:1、理解区间的概念 2、掌握区间的表示方法 技能目标:1、能进行区间与不等式的互相转换 2、能在数轴上正确画出相应的区间 情感目标:体会不等式在日常生活中的应用,感受数学的有用性教学 重点 和 难点 重点: 不等式的概念和基本性质 难点: 1、会比较两个整式的大小 2、能根据应用题的表述,列出相应的表达式教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.1
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.4 二项分布. *创设情境 兴趣导入 我们来看一个问题:从100件产品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次数用表示,求离散型随机变量的概率分布. 由于是有放回的抽取,所以这种抽取是是独立的重复试验.随机变量的所有取值为:0,1,2,3.显然,对于一次抽取,抽到不合格品的概率为0.03,抽到合格品的概率为1-0.03.于是的概率(仅求到组合数形式)分别为: , , , . 所以,随机变量的概率分布为 0123P 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 一般地,如果在一次试验中某事件A发生的概率是P,随机变量为n次独立试验中事件A发生的次数,那么随机变量的概率分布为: 01…k…nP…… 其中. 我们将这种形式的随机变量的概率分布叫做二项分布.称随机变量服从参数为n和P的二项分布,记为~B(n,P). 二项分布中的各个概率值,依次是二项式的展开式中的各项.第k+1项为. 二项分布是以伯努利概型为背景的重要分布,有着广泛的应用. 在实际问题中,如果n次试验相互独立,且各次实验是重复试验,事件A在每次实验中发生的概率都是p(0<p<1),则事件A发生的次数是一个离散型随机变量,服从参数为n和P的二项分布. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
2、当天值日班长负责考勤并认真做记录,每周在周一班会公布,并向年级组报告情况,期末班主任将学生个人考勤统计登载在学习成绩册上。 3、早晨到校时间7:20,下午到校时间13:50(冬季),14:20(夏季)。第一次上课预备铃响后快速进入教室,第二次上课铃响后进入教室为迟到。当天值日班长要认真做好迟到记录。
说教学目标:? 1.认识6个生字,会写7个生字。? 2.正确、流利、有感情地朗读课文,能结合注释了解课文内容,背诵课文。? 3.反复诵读理解作者炽热的思想感情;体会句式整齐,气势磅礴的语言特点。三、说教学重难点:1.能结合注释了解课文内容,背诵课文。(重点)?2.正确理解作者炽烈的感情,领会文章表现手法的特点。(难点)四、说教学方法:? 根据设定的教学目标,这节课我采用的教学方法有:???1.朗读法? ??本课课文用语以四字韵文为主,读起来朗朗上口,让学生通过大量的朗读,感受作者语言上的特点,同时也加深对课文情感的了解。
“我们的人民热爱生活,期盼有更好的教育、更稳定的工作、更满意的收入、更可靠的社会保障、更高水平的医疗卫生服务、更舒适的居住条件、更优美的环境,期盼着孩子们能成长得更好、工作得更好、生活得更好。人民对美好生活的向往,就是我们的奋斗目标。”四、中国梦这是一个绽放梦想的时代,每个人都是梦想家。中国梦从我的梦开始。同学们,在每一个阶段尽情放飞你的梦想,让他带领你前行,照亮你的人生。坚持梦想的过程,是一个不断超越自我、实现自我的过程。抬头看着你的梦想,脚踏实地的努力每天都离梦想更近一步。中国梦,承载着中国民主、富强、公正、和谐、自由的最基本价值观、承载着自强不息的中国精神。中国梦需要我们每一个人付出自己的努力,共筑梦想,让梦想照耀中国,善良世界。
今天是中国的传统节日——重阳节。重阳,两九相重,日月并阳,有久久长寿之意。1989年,我国把每年农历的九月九日定为老人节,从而将传统与现实巧妙地结合,使重阳节成为尊老、敬老、爱老、助老的节日。当我们日渐长大,父母也在逐渐老去。这是多么残酷的事实!我们总是理所当然的认为,父母的爱是天经地义的,他们的付出是不求回报的。不,不是这样!父母也渴望得到回报,他们渴望得到的是我们的一颗孝心,而不是昂贵的礼物。也许,一个微笑,一个拥抱,一句关心的话语便会使他们感到如临天堂般的快乐。“树欲静而风不止,子欲养而亲不待”,这是多么残酷的事实!尽孝要趁早,作为学生,我们可以多为父母做些力所能及的小事:在父母下班回家时递上一杯热水,帮父母捶捶背,关心父母的身体,体谅父母的难处,父母呼唤时马上答应,抓紧完成父母交代的事情,耐心听一下父母的唠叨或者是教训……一点一滴的小事,都是我们在回报父母的关爱。
甲、乙、丙三方本着平等、自愿、诚实信用的合作原则,协商签订本服务合同。甲、乙、丙三方必须遵守国家法律、法规,遵守北京市的有关规定,以确保甲、乙、丙三方的合法权益不受侵犯。 第一条:家政服务内容甲方同意丙方为其选派乙方,承担甲方的第_____项服务: (1)家务服务;(2)月嫂;(3)育儿嫂; (4)厨嫂;(5)老人护理;(6)医院病人护理; (7)钟点工 (8)家庭管家; (9)其他: _ 。第二条:乙方应满足的条件甲方要求乙方应具备的技能或满足的条件: 。第三条:服务场所: 。第四条:服务期限:_______年___月___日起至_______年___月___日止。第五条:试用期及服务费1、签订合同时,甲方必须向丙方交纳一次性会员费 元,及服务费保证金 元(做为乙方第一个月服务佣金)。
甲、乙、丙三方本着平等、自愿、诚实信用的合作原则,协商签订本服务合同。甲、乙、丙三方必须遵守国家法律、法规,遵守北京市的有关规定,以确保甲、乙、丙三方的合法权益不受侵犯。 第一条:家政服务内容甲方同意丙方为其选派乙方,承担甲方的第_____项服务: (1)家务服务;(2)月嫂;(3)育儿嫂; (4)厨嫂;(5)老人护理;(6)医院病人护理; (7)钟点工 (8)家庭管家; (9)其他: _ 。第二条:乙方应满足的条件甲方要求乙方应具备的技能或满足的条件: 。第三条:服务场所: 。第四条:服务期限:_______年___月___日起至_______年___月___日止。第五条:试用期及服务费1、签订合同时,甲方必须向丙方交纳一次性会员费 元,及服务费保证金 元(做为乙方第一个月服务佣金)。 2、服务员上岗试用期为 个工作日,在试用期内,乙方达不到约定技能等要求或符合其他调换条件的,丙方应在甲方提出调换要求后 日内予以调换,调换后试用期重新计算;甲方应按乙方的实际试用天数支付试用期服务费。试用期内,甲方可以免费调换乙方。
1、执行门禁卡接送制度,请家长按要求在接送孩子时必须刷卡,才能接送孩子;对于持卡的陌生人,力在和孩子家长取得联系后,确认接孩子的持卡人的身份后,才能放孩子; 2、户外活动时,有组织、有目的地开展户外活动,以免幼儿因为疯打而发生安全事故; 3、每天做好晨检工作,检查幼儿的精神面貌、身体状况、 以及是否携带危险物品;增加午睡安全检察工作、检察孩子是否携带危险物品上床,检查幼儿是否被衣服的带子缠住、检察幼儿有无将异物放进嘴里等;
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。