提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版新课标小学数学二年级上册表内乘法(一) 说课稿

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 第二周国旗下讲话-给自己一个目标

    第二周国旗下讲话-给自己一个目标

    第二周国旗下讲话-给自己一个目标各位老师、各位同学:大家好,今天我讲话的题目是:给自己一个目标。度过一个愉快的暑假,我们在初秋的气息中迎来了新的学期。积蓄了一个假期的自信与激情,踏入浓浓书香气息的校园,我们可曾想过:这学期,我的奋斗目标是什么?这学期,我想获得的进步是什么?这学期,我会为此做出哪些努力?这学期,我准备怎样让自己更快乐?1993年,一个14岁的孩子在上海青年篮球队里打球,当时球队里的队员都穿着帆布面的篮球鞋。有一次,他在观看一场国外球队的比赛时发现,那些国外的球员竟然都穿着皮制的篮球鞋。这种球鞋不但美观,而且穿着舒适。于是,这个孩子梦想能穿上一双皮制的篮球鞋。 一天,当他把这个梦想告诉教练后,教练笑着说:“努力吧,孩子,如果你能进入国家青年队,你就能穿这样的鞋。”从这一刻起,这个孩子就把进入国家青年队作为自己奋斗的目标。终于在17岁那年,他凭借自己超凡的球技被选入国家青年队。穿上了梦想已久的皮制篮球鞋,他倍加珍惜。一位队友发现此事后告诉他:“不用在意一双球鞋,如果你能进入国家队,这样的篮球鞋你想有多少就有多少。”这句极具诱惑力的话深深震撼着他,于是,他又有了新的奋斗目标:中国国家篮球队。

  • 初中历史与社会人教版九年级下册《地球一小时 活动》教材教案

    初中历史与社会人教版九年级下册《地球一小时 活动》教材教案

    地球一小时(Earth Hour)是世界自然基金会(WWF)应对全球气候变化所提出的一项倡议,希望家庭及商界用户关上不必要的电灯及耗电产品一小时。来表明他们对应对气候变化行动的支持。过量二氧化碳排放导致的气候变化目前已经极大地威胁到地球上人类的生存。公众只有通过改变全球民众对于二氧化碳排放的态度,才能减轻这一威胁对世界造成的影响。地球一小时在3月的最后一个星期六20:30~21:30期间熄灯。活动由来:“地球1小时”也称“关灯一小时”,是世界自然基金会在2007年向全球发出的一项倡议:呼吁个人、社区、企业和政府在每年三月最后一个星期六20:30~21:30期间熄灯1小时,以此来激发人们对保护地球的责任感,以及对气候变化等环境问题的思考,表明对全球共同抵御气候变暖行动的支持。这是一项全球性的活动,世界自然基金会于2007年首次在悉尼倡导之后,以惊人的速度席卷全球,大家都来参加这个活动。[1] “地球1小时”活动首次于2007年3月31日在澳大利亚的悉尼展开,一下子吸引了超过220万悉尼家庭和企业参加;随后,该活动以惊人的速度迅速席卷全球。在2008年,WWF(中国)对外联络处透露,全球已经有超过80个国家、大约1000座城市加入活动。2013年,包括悉尼歌剧院、帝国大厦、东京塔、迪拜塔、白金汉宫在内的各国标志性建筑也在当地时间晚八点半熄灯一小时。[2] ,其中包括巴勒斯坦、法属圭亚那、加拉帕戈斯群岛、卢旺达、圣赫勒那岛、苏里南、突尼斯等首次参与“地球一小时”的国家和地区。在中国,北京鸟巢、水立方、世贸天阶等标志性建筑同时熄灯,同一时段,从上海东方明珠到武汉黄鹤楼,从台北101到香港天际100观景台,中国各地多个标志性建筑均熄灯一小时,全国共有127个城市加入“地球一小时”活动。

  • 2024年一季度D委工作总结及二季度工作打算

    2024年一季度D委工作总结及二季度工作打算

    二、二季度工作打算坚持把“D的建设”作为国有企业发展的初心,强化高质量发展的引领。(一)持续抓好理论知识学习。严格执行“第一议题”和中心组旁听制度,实现D委理论学习教育化常态化。采取辅导讲座、专家授课、外出观摩、观看专题片等形式,进一步增强学习效果。把学习D的二十大精神作为D员教育培训的重要内容,组织开展“学习二十大精神”主题D日、“我来讲DK”、现场红色教育等活动,提高全体D员干部的政治大局观、科学发展观。(二)持续抓好D建品牌创建。以各基层D支部为主体,坚持“参与性强、重点突出、对象鲜明”的导向,每个支部分别创建1至2个D建品牌,实现由“特色”向“品牌”的升华。(三)持续抓好形势任务教育。持续深入开展“两珍惜、两保持”形势任务教育,编写形势任务教育辅导材料,加强宣教宣讲,引导各级团结一致向前看,凝心聚力谋发展。注重发挥新闻媒体舆论引导作用,在AAA公众号、矿区广播开办形势任务教育专栏,通过创作微电影、短视频、录制广播等形式,扩大形势任务教育效果。

  • 最新室内设计合同范本

    最新室内设计合同范本

    三、付款方式: 1、合同一经签订,甲方3天内应付首期款合同总额  %,计  元。 2、乙方提交设计方案,甲方3天内应付款合同总额  %,计  元。 3、设计图纸完成提交后,甲方3天内付清设计余款合同总额%,计元。 4、如有增加设计项目,设计费另计。 第三条 :违约责任: 1、 合同经双方签字生效后,任何一方需变更合同内容,应经双方协商一致后重新补订协议。 2、 甲方变更委托设计项目、规模、条件或因提交的资料错误,或所提供资料作较大修改以致造成乙方设计需返工时,双方须另行协商,甲方应按乙方所耗工作量向乙方支付返工费。 3、 甲方应按本合同第二条规定的金额和时间向乙方支付费用,甲方如果逾期付费超过10天以上,乙方有权暂停履行下阶段工作并通知甲方,直至终止合同。 合同终止后乙方收取的设计费不予返还甲方。 4、合同生效后,在合同履行期间,乙方逾期完成委托任务,应向甲方支付违约金合同总额的%。 5、甲方擅自解除合同,乙方收取的设计费不予返还甲方。乙方擅自解除合同,乙方应付还甲方双倍设计费。

  • 部编版一年级语文下册第4课《古诗两首》优秀教案范文

    部编版一年级语文下册第4课《古诗两首》优秀教案范文

    指导写字  觉:“学”下面的的“子”换成“见”。  夜:第四笔是“竖”,不要写成“竖钩”。注意指导笔顺,提示不要漏写第七笔“点”。可与熟字“衣”比较字形的异同。  雨:仿佛隔窗观雨。里面左右各两点,上下排列,像檐下滴水。  声:上面是“士”,不是“土”。下面的最后一笔是“丿”,不是“竖弯钩”,不能写成“巴”。  知:左边是把“午”的“竖”改撇,再加一点。右边是“口”表示知道了要用口说出来。  少:上面与“小”不同,第一笔是竖,没有钩。

  • 部编版一年级语文下册第15课《夏夜多美》优秀教案范文

    部编版一年级语文下册第15课《夏夜多美》优秀教案范文

    自学(学生圈点批画,初步养成良好的读书习惯)  学生自由读课文,圈画出文中的生字,注意读准字音,把句子读通顺,难读的词句可以想办法解决。  识字(多种方式巧记生字,激发学生主动识字的愿望)  教师出示生字词,学生互相交流自己的识字秘诀(如歌谣识字、猜谜识字、做动作识字、偏旁归类识字等)  (部分学生识字方法单一、枯燥,互相交流利于学生反思,开动脑筋巧记生字;另外对于学生的识字秘诀,教师要及时鼓励,让他们体验到主动识字的乐趣。)  朗读(多层次自主阅读,拓展思维空间,提高阅读质量。)  1、检查读。教师以开火车的形式让学生按自然段读课文,看谁读得既正确又流利。  2、指正读。把你喜欢的小动物的话找出来读一读,教师随机指导。  3、想象读。先听范读录音,然后指名读文,边读边想象当时的情景。  4、分角色读。教师指导学生研究讨论每个角色的语气怎样读,并尝试给这些角色设计表情动作。

  • 部编版一年级语文下册第5课《看电视》优秀教案范文

    部编版一年级语文下册第5课《看电视》优秀教案范文

    教学新课  (一)初读课文  读准字音,想想课文中什么事很奇妙呢?  (二)自读课文  1、再读课文找出生字,生字多读几遍  2、记住生字字音(检查生字情况:分节读,正音)  (三)生字教学  1、合作学习生字,交流记字方法  2、出示词语巩固生字  (四)写字教学  “全家”两字教学  (五)读懂课文  1、 再读课文,读懂后让你上来排顺序  爸爸和我———足球迷  奶奶———京剧 听的入迷 打盹睡觉  爸爸和我———足球 乐的直叫 一起拍手欢  妈妈 ———音乐 舞蹈  2、 找出把足球赛转成京剧的小节?  爸爸再看球赛时想到了什么?  3、 结果奶奶听的入迷,我和爸爸都在打盹睡觉。  奶奶又怎么想了呢?  找出京剧换成足球这一节?

  • 部编版一年级语文下册第9课《两只鸟蛋》优秀教案范文

    部编版一年级语文下册第9课《两只鸟蛋》优秀教案范文

    朗读(读说思议练结合,培养学生语文综合能力。)  1、学习第一小节:  (1)指名读,回忆刚才摸鸟蛋的感觉(小小的、凉凉的)体会着读一读。  (2)比较“鸟蛋凉凉的”和“凉凉的鸟蛋”:你发现了什么?(引导学生发现这类词语的特点:词序不同,但表达的意思相同。)除了凉凉的鸟蛋还有什么是凉凉的?  (3)你还能像这样再说几个吗?  (如果学生说不出来,教师可进行指导,把写有“花儿、小草、柳枝、大海,红红的、绿绿的、软软的、蓝蓝的”的词语卡分给学生,让拥有不同词语的学生去找朋友,再让两个朋友变换左右顺序。)  2、学习第二小节:  (1)轻声读文,思考:你怎么知道两只鸟蛋就是两只小鸟?  (2)出示小鸟破壳的图片或课件,引导学生说一说。  (3)启发想象:鸟妈妈焦急不安是什么样?你能表演一下吗?  表演后试着把妈妈的语气读出来。  (4)你还能用焦急不安说句话吗?看谁说得和别人不一样?

  • 部编版一年级语文下册第19课《乌鸦喝水》优秀教案范文

    部编版一年级语文下册第19课《乌鸦喝水》优秀教案范文

    教学思路:  这是一篇多幅图的看图学文。在整个教学过程中,“指导观察,图文对照”是教学的基本方法。教学中应以观察训练为主线,重视思维能力的培养,帮助学生理解词语和课文内容。  教学开始,让学生初步看图,大致了解图意。再借助拼音边读课文边看图,初步了解课文内容,并把说明图意的句子做上记号。在此基础上图文对照,理解词句,进行讲读。  第一自然段,通过“口渴”“到处找水”,让学生体会乌鸦急于喝水的焦急心情。  讲读第二自然段,让学生通过看图、读文后思考:乌鸦为什么喝不着水?在要求学生对第一幅图画面的观察后,理解“水不多”“瓶口又小”是乌鸦喝不到水的原因。引导学生了解“怎么办呢?”是乌鸦自己问自己,表明它要想出解决问题的办法。  讲读第三自然段时,引导学生再看第一幅图,从而理解乌鸦的办法不是凭空想出来的,而是一边观察周围事物,一边想办法。从而解决本课的教学重点问题。

  • 部编版一年级语文下册第18课《四个太阳》优秀教案范文

    部编版一年级语文下册第18课《四个太阳》优秀教案范文

    猜谜激趣,导入新课  1.师出谜语:白天不见,晚上出现。又红又圆,照亮地面。  2.出示词卡“太阳”,指导读准字音。  3.出示课题“四个太阳”,指名读,齐读。  4.引导质疑:读了课题,你的小脑瓜里是不是蹦出了小问号?  二、初读课文,认记生字  1.出示课件:带拼音生字,指名带读。  2.出示课件:去拼音生字并打乱顺序,摆字卡,自由练习朗读。  3.游戏:我说你找喊名字。  4.指导识记生字方法。  5.巩固游戏:我把生字送回家。动画演示,指导写字  1.猜谜引入:大口框里有个“大”  2.出示课件:“因”书写笔顺规则  看了动画,你知道了什么?  3.出示课件:“园”  “园”与“因”哪里长得很像?书写的时候要注意些什么?(同样先里面后封口)  4.师范写“园”“因”,讲解书写要领。  5.生自由练写,师巡回指导。  6.集体评价。

  • 美国内战精品教案

    美国内战精品教案

    2、过程与方法:引导学生阅读《宅地法》《解放黑人奴隶宣言》两个文件,认识这两部法律在内战中的作用;结合林肯的历史活动,学会评价历史人物的方法。3、情感态度与价值观:通过战争中林肯和人民群众的活动,使学生认识到人心向背是战争胜利与否的关键,同时个人作用也是不可忽视的。二、教学重难点1、教学重点:美国内战爆发的原因、历史意义;林肯为维护国家统一所作出的历史贡献。

  • 一次函数教学教案

    一次函数教学教案

    教学目标1.能从实际问题中得到函数关系式,学会积累函数的建模思想;2.能对不同背景下函数模型(关系式)的比较,抽象出一次函数和正比例函数的概念,发展抽象思维及概括能力;3.初步理解一次函数与正比例函数的概念;4.知道一次函数与正比例函数的联系和区别,体验特殊和一般的辩证关系;5.会判断两个变量之间的关系是一次函数还是正比例函数;6.能根据问题信息,确定一次函数与正比例函数的表达式,提升数学应用能力;7.会根据一次函数与正比例函数的概念,求字母的取值;8.在一次函数和正比例函数概念的形成与应用过程中, 体验函数与人类生活的密切联系,增强对函数学习的求知。感受合作交流的必要性,同时提高学生的观察、抽象、概括的能力和语言表达能力,从而培养学生对学习数学的兴趣。

上一页123...230231232233234235236237238239240241下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。