方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
庐山究竟美在哪里?是雄奇、是壮丽、是险峻、还是幽秀?诗人为什么说:“不识庐山真面目”呢?(小组用书本文具搭建成山,用橡皮当做诗人,理解角度不同观察结果也不同的道理。)
品“万里长征人未还”。战争有多久,思乡就有多久;环境有多苦,战士就有多苦。“古来征战几人回?”很多战士在残酷的战争中失去了生命,再也回不到家乡,见不到亲人。
一、导入新课 同学们,上课之前,我们先测试一下大家的识字能力。(多媒体展示“悲悯”一词,让学生朗读。要求以悲悯之心读“悲悯”) 上次课我们学习《茅屋为秋风所破歌》,感受到了伟大诗人杜甫的悲悯之心,其实,与杜甫同时代的白居易也是一位伟大的现实主义诗人,教材把白居易的《卖炭翁》与杜甫《茅屋为秋风所破歌》编在同一课,不仅仅因为两首都是唐诗,更是因为白居易与杜甫一样也有一颗悲悯之心。今天,让我们一起来学习《卖炭翁》,感受白居易的悲悯之心吧。(板书课题) 二、介绍作者:(请学生介绍白居易,多媒体出示白居易的相关资料。)(2分钟) 三、诵读,概括诗歌内容。 1.同学们,白居易主张:文章合为时而著,诗歌合为事而作。你们之前预习过课文,你知道这首诗是为哪一件事而作吗? 2.什么是“宫市”?(出示背景) 时宦者主中市买,谓之“市”,抑买人物,稍不如本估(压低人家的物价,比原价稍低)。末年(唐德宗贞元末年)不复行文书,置“白望”数十百人于两市及要闹坊曲,阅人所卖物,但称“市”,则敛手付与,真伪不复可辨,无敢问所从来及论价之高下者。率用值百钱物,买人值数千物,仍索门户及脚价银。人将物诣市,至有空手而回者。名为“市”,其实夺之。《旧唐书张建封传》 3.试想一下白居易写这事时心情怎样?
1.正确,流利的朗诵古诗,背诵课文。(重点)? 2.结合注释,查找相关资料,准确体会诗歌思想感情。?四、说教学方法:? 根据设定的教学目标,这节课我采用的教学方法有:?1.朗读法? 古诗课文要让学生通过大量的朗读感受诗歌的音韵美,通过朗读,可以帮助学生巩固字音,同时能对诗歌内容有大致的了解。?2.发现点拔教学法? 诗歌呈现内容的方式比较含蓄,因此对于诗歌的主旨句要进行重点分析,让学生准确的领悟诗歌的内涵。? 3.多媒体辅助教学法? 本课的教学同时准备了多媒体课件,内容涵盖作者简介,课文生字,诗歌内容讲解等,辅助教学,避免枯燥的说教形式,让课堂内容呈现更丰富。
1.了解诗歌内容及时代背景,感受三黑对土地的热爱之情和重获土地的喜悦。?2.想象文字描写的景物,体会作者的感情,感受农民对土地的感情。3.通过理解重点词语来体会诗人描绘的景物。?四、说教法? 1.自主朗读感悟法:要用好课文这个“例”,少分析,多揣摩,多感受,多体验。教师引领学生通过多种形式的朗读,深入到文本的语言中,感受语言,熟悉语言,理解语言,借鉴语言。?2.情境教学法:借助多媒体提供,通过语言渲染等途径,引导学生入情入境地感受文章内容,理解重点语句,体会作者所表达的情感。
能够担任我们学院的重点团队之一的主要负责人,这让我感到十分任重而道远,毕竟是第一次带领团队参加三下乡实践活动。团队组织得是否得当,工作分配是否合理,还有住食问题、安全问题等都是我们队长要考虑的。因为怕自己无法胜任这个职位,自信心起初当然会受到一定的打击。为了能够让这次的活动做到尽善尽美,在出发前,我对所有的队员做了思想工作必须特别能吃苦,特别能贡献,在服务大众的同时,培养自身的社会实践能力。并且让各个队员做好准备工作和工作展望。准备工作如期进行,大家都有了大概的工作理念。自然地,充分的工作准备,不仅给予了我极大的自信心,而且还使工作顺利地展开。
一、说教材货比三家是北师大版小学数学三年级上册第八单元第二小节的内容。本节课是在学生学习了小数的意义和读法、写法的基础上展开的,也是上节课“买文具”这一情境的延续。教材中安排了学生熟悉的主题图,从标价牌上的价格入手,由“去哪个文具店买铅笔盒、买橡皮最便宜?”这一情境问题,自然地进入比较小数大小的教学,使学生经历把表示价格的小数进行比较的过程,也为后续学习小数的四则混合运算进行了必要的铺垫。针对学情,教材的实际特点及新课程理念,我们初步拟订了两个教学目标:1、探索并掌握比较小数大小的方法,会正确熟练地比较小数的大小。2、通过观察、比较、交流,学会独立思考,并能表达自己的想法。
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
(一)市场发展定位不够高,不适应当前社会经济发展的需要。作为中南地区的商贸集散地,玉林有着悠久的商贸历史和较好的商业发展前景。而建材市场的建立和发展,由于认识上的局限性,其发展战略定位不是很高。表现在二个方面:一是市场建设档次不高,大部分建材经销商虽能够归行入市,但是经营方式仍停留在摊位式经营,商品以低、劣居多;二是市场销售覆盖面不广,目前市场上的商品多销在本地,及周边一些县城,知名度低,辐射范围不广,销售量有限,影响力低下。
(一)市场发展定位不够高,不适应当前社会经济发展的需要。作为中南地区的商贸集散地,玉林有着悠久的商贸历史和较好的商业发展前景。而建材市场的建立和发展,由于认识上的局限性,其发展战略定位不是很高。表现在二个方面:一是市场建设档次不高,大部分建材经销商虽能够归行入市,但是经营方式仍停留在摊位式经营,商品以低、劣居多;二是市场销售覆盖面不广,目前市场上的商品多销在本地,及周边一些县城,知名度低,辐射范围不广,销售量有限,影响力低下。
一、 领导重视,周密安排 根据上级指示精神和《关于组织开展今年防汛安全大检查的通知》的要求,我局对今年的防汛安全工作高度重视,分管领导亲自抓,主要科室、相关单位负责具体抓落实。收到《通知》后,我局分管领导副调研员魏安廷及时组织局城建科、工程科、市市政维护处、市城监支队等单位负责人,召开汛前安全大检查工作专题会议,对今年的防汛安全及汛前安全大检查做出了周密的部署安排,并提出了具体工作要求。
1、征兵意识不高 当前,征兵现状已由上世纪的“当兵热”降到“当兵冷”,一方面是由于许多青年人缺乏吃苦耐劳的精神,认为当兵要吃苦、受累、远离家人,舍不得家里的“幸福生活”;另一方面,许多家长也不鼓励,甚至不同意子女去当兵,对入伍缺乏正确的认识。 结合每年“八一”建军节,“国防教育日”以及历史纪念日,合理引导青年及其社会广大群众树立必要的国防意识,营造良好的征兵软环境。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。