一、教学目标:1. 体会燕子过海的艰辛和艰难,懂得要爱护益鸟燕子。2. 运用前两课学到的理解句子意思的方法,读懂描写燕子过海不怕辛苦、艰难和写水手们对待蒸子的态度的句子。3. 能有感情地朗读课文。二、教学重点和难点:理解课文中描写燕子过海时非常辛苦、艰难的句子。三、教学过程:(一)启发谈话,揭题。同学们,你们见过燕子吗?请你向大家介绍一下燕子,好吗?(燕子是益鸟。燕子是候鸟。燕子的羽毛是黑色的,燕子的尾巴像剪刀。)你们说得真不错,谁能告诉我,燕子大概有多大?(学生用手比划)那么,谁见过海?海有多大?(海很大,天连水,水连天,望也望不到边。)谁能用一个词说说“天连水,水连天”的意思?(一望无边、一望无际、无边无际)谁能用手比划一下海有多大?确实比不出,这么小的燕子,要过天连水,水连天,一望无际的大海可真了不起!你们看见过燕子过海吗?有一艘军舰上的海军战士看见了过海的燕子,于是他们给我们写下了这篇文章《燕子过海》。教师范读(二)学生质疑。读了这篇课文你有什么问题呢?(燕子为什么要过海?为什么它要不分昼夜地飞?为什么像雨点一样落下来?)
参与实践,充分体验1、直观感知,初步认识吨让学生说说自己的体重,请出4个体重大约25千克的同学站在一起。算一算4个学生的体重大约是多少千克。再推算一下40个这样的同学大约重多少千克?讲述:为了简便计算1000千克,我们把1000千克规定为1吨。吨也可以用英文字母“t”表示。2、结合实际,进一步认识吨我们教室里的桌、椅、书本等,你认为用吨做单位合适吗?你认为多少张桌子或者椅子合在一起大约重1吨?学生独立思考;引导学生在小组内展开讨论;小组汇报讨论结果;问:在生活中,你见过哪些物体是用吨做单位的?学生举例。讲述:计量比较重或大宗物品有多重时,通常用吨做单位。练习:1棵白菜重1千克,( )棵白菜重1吨。 1袋大米重100千克,( )袋大米重1吨。 1头奶牛重500千克,( )头奶牛重1吨。 1桶油重200千克,( )桶油重1吨。
教学目标:1、通过观察实物,体会到从不同角度观察物体所看到的形状可能是不同的。2、会辨认简单物体从不同角度观察到的形状,发展空间观念。教学重点:会辨认简单物体从不同角度观察到的形状。教学难点:体会到从不同角度观察到的的形状可能是不同的,发展空间观念。课前准备:实物或图片等教学过程:一、出示玩具汽车,学会观察物体第一步:1、观察玩具汽车,学生分别站在汽车侧面和后面两个不同的方向观察。2、分别把玩具汽车的侧面和后面对着全班,让学生说一说这是谁看到的?3、小结:不同的位置观察同一物时,看到的形状可能是不同的。
(一)加强领导,落实责任1.针对当前安全生产形势,街道安全生产委员会办公室成立了安全生产大检查领导小组,将安全生产各项检查工作分解到月、细化到人;坚持每月召开安全生产工作例会,完善充实各项制度措施,确保组织、制度、措施到位。2.切实加强消防安全工作领导,成立消防安全委员会、消防安全委员会办公室、消防安全服务中心(即“一委一办一中心”),深化基层消防安全管理工作,为辖区人民群众营适健康安全的生活环境。(二)开展安全生产检查,消除各类隐患1.元旦、春节期间开展烟花爆竹专项排查整治活动,累计排查x余次,确保年前和节假日期间居民群众生命财产安全。2.对辖区人口密集的场所进行消防安全检查,以排查重大火灾隐患、消防知识宣传为重点,预防各类火灾群死群伤事故的发生。今年以来,组织各社区开展危房、自建房、违建建筑等摸排检查x次。3.组织各社区开展整治私搭乱扯电线“飞线充电”现象,累计整治处理x处,有效降低小区内火灾安全隐患。4.重点排查“九小”场所、“多合一”等经营场所是否违规住人、安全疏散通道是否通畅、消防设施是否齐全、灭火器是否在有效期内等问题,现场发现问题当场落实整改。5.对辖区内所有居民小区、企业单位消防器材进行监管,定期检查消防器材是否完好有效,是否有损坏、丢失的现象,发现问题及时整改。6.对辖区居民小区楼道杂物进行专项整治,联合公用事业服务中心对小区内私搭乱建侵占消防通道情况进行了检查,对楼道内堆积的杂物、旧家具等火灾隐患进行了清理。
二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。三是精准施策,做好新形势下就业创业工作。要运用动态的观念,准确掌握每个失业人员状况,根据个人的实际情况及需求,提供一对一就业援助服务;对有求职愿望的失业人员提供每月不少于*次的岗位推荐服务,对有学习培训意愿的失业人员,推荐参加各项技能培训;切实落实各项补贴,为符合办理条件的失业人员办理各项就业援助补贴;对辖区企业进行信息采集工作,积极开发就业岗位,多途径多渠道促进就业。四是多管齐下,做好政务服务工作。
在今后的工作中,我将认真贯彻落实落省市区关于深化放管服改革的部署和要求,着力在简化办事流程、提高工作效率、优化服务效能上下功夫,重点做好以下工作:一是加强政治理论和业务政策学习,坚持学深悟透、学以致用,切实把思想和行动统一到完成年度工作目标任务上来,进一步转变工作作风,加强作风建设,提高工作效能、确保街道政务服务工作健康有序进行。二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。
二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。三是精准施策,做好新形势下就业创业工作。要运用动态的观念,准确掌握每个失业人员状况,根据个人的实际情况及需求,提供一对一就业援助服务;对有求职愿望的失业人员提供每月不少于*次的岗位推荐服务,对有学习培训意愿的失业人员,推荐参加各项技能培训;切实落实各项补贴,为符合办理条件的失业人员办理各项就业援助补贴;对辖区企业进行信息采集工作,积极开发就业岗位,多途径多渠道促进就业。四是多管齐下,做好政务服务工作。要把“群众办事是否方便”作为衡量改革成效的重要指标,做好“最后一公里”服务,持续推进“放管服”改革。
其主要目标是⑴引导幼儿观察蚂蚁,通过各种渠道收集蚂蚁的知识,培养幼儿对探索活动的兴趣。⑵了解蚂蚁特有的一些活动,如“气味语言”“分工合作”“搬运食物”“建筑巢穴”等,并引导幼儿用身体动作表现蚂蚁的活动。⑶培养幼儿关注生活的习惯,并能主动为活动收集相关的材料。⑷通过剪剪、画画、贴贴、做做等活动,培养幼儿动手操作的能力。⑸通过和蚂蚁的一系列接触,发展幼儿的想象创造能力,培养幼儿交往协作的能力。⑹培养幼儿亲近动物,喜爱动物的情感。⑺ 教师和幼儿共同体验游戏的快乐。以下是我们汲取的一些有关蚂蚁的活动片断,生动地再现了孩子们用已有的生活经验不断生成发展出更为生动有趣的、丰富的游戏情节。片断一:有趣的小蚂蚁午后的阳光暖暖的照在我们身上,小朋友们手拉着手悠然地走在这午后的阳光里。“看,那是什么呀?”“好象是蚂蚁吧。”“它们在干什么?”“在搬东西。”“好象是在搬草片儿。”“不对,是面包屑。”“蚂蚁那么小,怎么搬得动那么重的东西。”“你没看见有好几个蚂蚁在一起搬吗?”“对,大家一起搬就搬得动了,对吧?”“是的。”“小蚂蚁搬面包屑干嘛?”“当然是搬回家吃了。”“蚂蚁那么小,怎么吃东西呢?”“当然是用嘴巴吃了。”“蚂蚁那么小没有嘴巴。”“瞎说,蚂蚁有嘴巴,不然,它不要饿死吗?”“蚂蚁喜欢吃什么呀?”“好象喜欢吃甜甜的东西吧。”“是的,我以前看见过它们在搬饼干屑。”“对,我还看见它们都爬在我吃剩的西瓜皮上。”“是的,是的,我也看见过,而且,有许多许多蚂蚁。”“你说,它们怎么会知道的,真奇怪!”“它们是看到的。”“不,是闻到的。”(评析:无意中的发现,引起了孩子莫大的兴趣,他们的好奇心和兴奋的表情给了我们组织这次游戏活动的灵感。)教师拿来放大镜和昆虫盒,和孩子们一起进入了奇妙的蚂蚁世界。幼:我们去找一点糖来引引蚂蚁吧!幼:好的,我也去拿点饼干屑。幼:蚂蚁会住在哪里呢?幼:垃圾箱旁边,我看见过的。幼:不对,是草丛里。幼:是的,有一次我也在草里发现它们在爬呀爬,很好玩的。幼:好象是泥土里,我在电视上看到过。幼:看,这里有这么多洞!幼:嘘,别讲话,不然,他们就不出来了。幼:把饼干放在蚂蚁洞口,让它们出来搬。师:你在干嘛?幼:我在挖洞,让蚂蚁出来。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
教学目标: 一、了解车的类型、结构、功能等,并学会运用多种媒材制作造型美观的车。 二、掌握制作车的基本方法。 三、在实践操作中感受用不同大小、不同形状,不同质地的材料制作车的乐趣和成就感。 四、训练学生积极地动手、动脑,主动参与实践与创造,养成善于思考、细心观察的好习惯,培养协作精神。 教学重点:利用生活中显而易见的材料,制作汽车。 教学难点:车型设计新颖美观,结构合理。 教师用具:电教媒体,教学课件,汽车范作,剪刀,双面胶等。学生用具:自备的制作汽车的各种材料(如,塑料瓶,易拉罐,各种蔬菜、瓜果,橡胶泥,剪刀,小刀,钻子,牙签,旧鞋,袜子,玩具赛车车轮等。) 教学过程: 一、开门见山,明确目标 1、欣赏萝卜汽车和拖鞋汽车,并分析其制作材料的特殊性。 2、板书课题。 二、交流讨论,呈现问题 1、提出问题,学生讨论:你会选用哪些材料,制作汽车的哪个部分呢? 2、师生互动探讨:恰当、巧妙地选材。(了解学生的创作想法与思路,教师及时予以引导。)
许慎的《说文》中讲:“亭,亭也,人所停集也。凡驿亭、邮亭、园亭,并取此义为名。”亭的历史十分悠久,一直可以上溯到商周以前。但是亭字的出现,却相对较晚,大致始于春秋战国前后。甲骨文,金文中均未见有亭字,现在发现的最早的亭字,是先秦时期的古陶文和古玺文。因此,在秦以前,亭的基本形制或许并不是十分成熟,但是到秦汉时,亭已经十分普遍了,是一种有着多种用途,实用性很强的建筑。
南乡子·登京口北固亭有怀辛弃疾何处望神州?满眼风光北固楼。千古兴亡多少事?悠悠。不尽长江滚滚流。年少万兜鍪,坐断东南战未休。天下英雄谁敌手?曹刘。生子当如孙仲谋。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。