
一、公路工程施工监理合同通用条件第1条“定义与解释”,适用于《公路工程施工监理合同》中的全部文件,即:协议书、通用条件、专用条件、附件A、附件B、附件C以及其它补充文件或附件。二、协议书由系列文件组成,其中的其它文件和其它附件是指签约双方一致同意增加列入监理合同的文件或附件,签约时必须在协议书中具体写明。协议书所包括的文件之间如果出现矛盾,按监理合同通用条件第1.2.3条的规定,按时间顺序以最后编写或双方最后确认的文件为准。而与该文件在协议书中的排列顺序无关。三、签约双方在监理合同专用条件第6.2.1条和监理合同附件C中,约定业主问监理单位支付监理服务费用的期限和方式;在监理合同附件B中约定业主向监理单位提供工作条件的期限和种类。四、签约双方在监理合同附件A中,约定监理单位提供监理服务的形式、范围与内容;在监理会同专用条件第5.2条中,约定监理单位提供监理服务的时间和有关期限。

3、Practicea. Nice to meet you. Nice to meet you,too.b. Perform the dialogue.c. Arrange the dialogue according to the pictures or sentence cards.d. Let’s play.A: Good afternoon,B. This is C. Hello, C! Nice to meet you.C: Nice to meet you, too.A,B: Goodbye!C: Bye!4、Assessment Workbook page 10Add-activitiesa. Listen to the recording and repeat.b. Make a dialogue according to "Let’s talk".Second Period一、Teaching contents1. Let’s learn Words:body, leg, arm, hand, finger, foot.1. Let’s do二、Preparation1、a puppet2、Cards of body, leg, arm, hand, finger and foot.3、headgear of a captain三、Teaching steps1、Warm-up/ Revisiona. Captain says to review "let’s do" of Part A.b. Perform the students their own dialogues.2、Presentationa. Learn to say "body, leg, arm, hand, finger and foot."b. Listen to the recording and repeat.c. Let’s do. Clap your hands. Snap your fingers. Wave your arms. Cross your legs. Shake your body. Stamp your foot.3、Practicea. Let’s draw a person.b. Let’s do. Point out which picture.c. Let’s do. Who responses faster.4、Assessment Workbook page 115、Add-activitiesa. Listen to the recording, repeat and act out.b. Say all the names of the body to your parents.Third Period一、Teaching contents1. Let’s check2. Let’s chant二、Preparation1、stationeries1、pictures of parts of Zoom

3、师:不相交的两条直线画长一些会怎样?量一量两条相交直线做组成的角分别是多少度?4、由小组同学在原记录单上动手合作操作,并进行讨论、汇报。5、师生共同总结:不相交的两条直线画长一些仍不相交,这两条直线叫平行线,也可以说它们相互平行;相交的两条直线形成的四个角,如果都是90度,就说这两条直线相互垂直,其中一条叫另外一条的垂线,这两条直线的焦点叫做垂足。6、生齐读P65平行和垂直概念,并画下来。7、今天我们就要一起来认识认识平行与垂直。(揭示课题)三、解释应用,巩固新知1、我们天天都在和垂线与平行线打交道:书本面相邻的两边是互相垂直的,相对的两边是互相平行的。2、P64主题图,找一找,图上有哪些平行和垂直的现象?3、做一做1找一找、想一想还有哪些物体的边是互相垂直的,哪些物体的边是互相平行的?

1、遵守公司所有规章制度及工作守则,如有违反将按罚则处理。2、保持仪容仪表端庄整洁、言谈举止优雅大方。 3、出入办公室不得大声喧哗、唱歌、吹口哨。进入他人办公室、办公区应有礼貌或先示意。如进入时,对方正在讲话,要稍等静候,不要中途插话或打断。4、工作时间不串岗、抽烟、睡觉、饮酒,不互相搭讪攀谈、说笑、搬弄是非,不打与工作无关的闲聊电话,通话要简明扼要。5、不吵闹、斗殴、扰乱秩序。严禁看与工作无关的书籍、杂志,不做与工作无关的事,工作中应通力协作,具有团队精神。6、单位内与同事应点头行礼以示致意。7、与上司、同事、客户握手时用普通站姿,并目视对方目光,大方热情、不卑不亢。8、工作时间办公桌上不摆放与工作无关的物品,保持桌面整洁,维护公司整体办公形象。9、未经同意不得任意翻阅不属于自已负责的文件、公函或随意翻看同事的文件、资料等。10、接听电话应先问候,并自报公司。对方讲述时应留心听,并记下要点,通话结束时礼貌道别。11、服从上级安排,如有不同意见,应婉转相告或以书面陈述,一经上级主管决定,应立即遵照执行,不得无故拖延。12、尽忠职守,保守商业机密。维护公司声誉,不作任何有损公司荣誉的行为。13、爱护公物,不浪费、不化公为私,不得将所保管的文件、财物等私自携出或外借。因过失或故意使公司财物、利益遭损害时,应负责赔偿。14、不得收受任何馈赠、挪借财物、假借职权、营私舞弊。15、不私自经营或兼任所在单位以外的职业,不得对外擅用公司名义。16、执行公务时,应争取工作时效,不得畏难,拖延或积压。严格遵循本职岗位业务程序,对所承办公务的执行情况须有复命制,做到善始善终。17、工作时间不得擅离职守,当日事务应当日办理完毕。18、公司职员在递交文件时,要将正面文字对着对方的方向。19、注意提高自身品德修养,切戒不良嗜好。20、对待客人、来宾应保持热情、谦和、礼貌、诚恳友善的态度,对待客人委托的事项应周到机敏处理,不得草率、怠慢对方或敷衍、搁置不办。21、与客人有不同意见时,不允许大声争吵,须保持冷静,做好解释工作。当其询问公司有关业务及人员情况时,如涉及商业秘密的,应婉言谢绝,非本职范围内的,不得信口开河。22、在履行职务时,不得擅自越权处理有关事务。属本职业务范围内的事务须对外签署时,应事先通报部门经理及公司授权批准后方可签署;非本职务范围的业务,须通知有关部门处理。

2、培养幼儿互助、友爱、勇敢、合作的品质及能力。 准备 1、幼儿分两组,每组一辆小三轮自行车,用彩色纸装扮一下,看哪组的自行车漂亮。 2、绕障碍骑车:在活动场地上有间隔地放置一些皮球或画一些标志(动物图案等),幼儿排好队,一个接一个地骑车绕过障碍。在每个幼儿掌握了要求、骑车基本熟练后,可开展小组比赛,看哪组骑得好又快。

孩子们的盛大节日——六一国际儿童节,下面是小编收集整理的XX年六一节国旗下讲话稿,欢迎阅读参考!!XX年六一节国旗下讲话稿一 尊敬的各位领导、各位来宾、各位家长, 亲爱的老师们、亲爱的小朋友们:你们好!又到了星期一了,我们今天又站在了操场上,看我们的五星红旗冉冉升起,今天国旗下讲话的题目是《六一儿童节》,每年的6月1日是小朋友们最开心最快乐的时候,因为这一天是六一国际儿童节,是我们小朋友自己的节日,在这样的节日里,全世界小朋友都载歌载舞,都在和自己的小伙伴们一起欢度自己的节日。去年的六一儿童节,小朋友们还记得吗?我们在大舞台上我们一起唱歌跳舞,和你们的爸爸妈妈一起拍照片。那个时候的样子,你们还记得吗?时间过的真快,今年的六一儿童节又要到了,你们都准备好了吗?你们都准备了哪些节目来欢度节日的?(幼儿讨论)你们准备了这么多节目啊?老师都非常喜欢,这段时间,小朋友们辛苦了,为了表演出更多精彩的节目,小朋友流了许多的汗,吃了许多的苦,但是你们心里开心吗?老师非常期待能够看到你们的精彩表演,也在这里提前预祝全体小朋友们六一儿童节节日愉快。

一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

明天,是农历的九月九日——是一年一度的“重阳节”。重阳节,也叫老年节。在唐诗宋词中,有许多的有关重阳节的诗词佳作。唐朝诗人王维的《九月九日忆山东兄弟》,“独在异乡为异客?每逢佳节倍思亲。遥知兄弟登高处?遍插茱萸少一人。”说的就是王维在重阳节思念家乡的亲人。重阳这天所有亲人都要一起登高“避灾”,插茱萸、赏菊花。作为一名小学生,更要发扬尊老、敬老、爱老、助老的传统美德。“老吾老以及人之老?幼吾幼以及人之幼”。在日常生活中,我们要时刻关心老人, 多为他们着想。在此,我向大家发起倡议:在家里,对待老人要有礼貌,多陪陪老人,多跟老人说说话,散散步,给老人盛饭、夹菜、倒茶,让老人在晚年不会感到孤独。

XX年六一儿童节国旗下讲话稿怎么写,以下是小编精心整理的相关内容,希望对大家有所帮助!XX年六一儿童节国旗下讲话稿 尊敬的老师、亲爱的同学们:“六一”是我们的节日,我们有许多纪念节日的方法,同学之间一句简短的问候,搞一个小小的Party,用几颗糠果靠劳一下自己和亲密伙伴,写几句话记录自己的心情等,在这些看似锁碎的活动中,孕育着我们许多童趣和美好记忆。我也想告诉大家:“六一”是我们父母的节日。当我们共同庆祝的时候,我们的父母或许正在田间劳作;或许正匆匆的赶往工地;或许是刚下夜班往家赶……他们为了什么呢?排在第一位的,肯定就是我们,为了我们能够有一个良好的学习生活环境;为了我们能够一天天长大,学到更多的文化知识;为了他们在走不动的时候,我们能把担子接过来,接替他们支撑起一片天空......所以看到我们脸上洋溢节日的幸福时,他们也是快乐的!“六一”更是我们老师的节日。我们在前进路上会遇到很多的困难和挫折,老师们会及时把我们从弯路上扶回来,使我们阔步走在笔直的大路上。因此,也请向我们的老师说一句”节日快乐!”在这里,我们祝所有同学节日快乐!祝我们的父母节日快乐!祝老师们节日快乐!谢谢大家!

1、欣赏《乌夏克木卡姆》(选段);(1)初听。完整欣赏。(2)复听。 使用哪些乐器?整个乐曲可分为几部分?每部分的音乐情绪是怎样的?慢板与快板部分,在音乐情绪上不同?在音乐风格上与汉族音乐不同? 探索中应从节奏、旋律、音色、调式、速度、力度、表演形式等要素上找根据。2、欣赏《褐色的鹅》;(1)初听。完整欣赏。(2)复听。歌手其音色属于人声分类的哪一类?其伴奏乐器是什么?这首歌的音乐情绪?3、欣赏《新疆之春》;(1)初听。完整欣赏。(2)复听。

木卡姆是流传于我国新疆维吾尔族人民聚居地区的一种具有统一调式体系的,以歌、舞、乐组合而成的传统古典大曲。它多用于民间的习俗节日、喜庆婚礼和娱乐晚会等场合。其歌词多反映爱情生活、痛恨黑暗势力、追求幸福生活的内容。 维吾尔族木卡姆可分为:“喀什木卡姆”、“多朗木卡姆”及“哈密木卡姆”三种类型。因为整个大曲有12套之多,故又称之为“十二木卡姆”。《乌夏克木卡姆》系喀什木卡姆中的一套。这套大曲由三部分组成。第一部分为大曲(即:琼乃额麦);第二部分为3~4首叙事歌曲及3~4首间奏曲组成叙事性套曲;第三部分是由2~7首歌曲组合而成的歌舞组曲。其中的叙事歌曲称作“达斯坦”。

教学重难点教学重点:进一步感受欣赏新疆音乐。教学难点:掌握新疆音乐的特点。教学准备 计算机、教学光盘、音响。教学过程1、导入 师:同学们除了以前我们学的几首新疆歌曲你还知道哪些呢? 生回答 师:今天我们就来再欣赏一首新疆歌曲。2、欣赏《乌夏克木卡姆》(选段)。(1)初听。完整欣赏。(2)复听。使用哪些乐器?整个乐曲可分为几部分?每部分的音乐情绪是怎样的?慢板与快板部分,在音乐情绪上不同?在音乐风格上与汉族音乐不同?探索中应从节奏、旋律、音色、调式、速度、力度、表演形式等要素上找根据。 (3)再听。 课堂总结 今天我们听了《乌夏克木卡姆》其中一个选段,我们要学会从中找到与我们平时所听的汉族歌曲的异同之处。好了,现在下课。

1.澳大利亚混合农业地域在生产结构、经营方式、科技应用、农业专业化和地域化等方面有哪些特点?2.在澳大利亚混合农业地 域形成的过程中,有哪些区位因素在起作用?学生发言,教师适当引导、评点并作讲解。[教师提问]:那么,澳大利亚的墨累—达令盆地的区位因素有什么不足之处?知识拓展:课件展示澳大利亚大分水岭的雨影效应的形成原理及东水西调示意图。[教师讲解]:澳大利亚东南部受大分水岭的影响,降水集中于大分水岭的东侧,在其西侧形成山地的雨影效应,降水丰富地区与农业生产地区分布不一致,灌溉成为澳大利亚农牧业发展的限制性条件。因此,澳大利亚对水利工程建设很 重视,东水西调促进了墨累—达令盆地农牧业的发展。[课堂小结]:这节课我们学习了农业区位选择的基本原理。 通过学习我们了解到,农业的区位选择实质上就是对农业土地的合理利用。

问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。