一、说教材《分数的简单应用》是人教版小学数学三年级上册第八单元的知识。教材安排主要是先让学生理解一个物体或者几个物体都可以当成一个整体进行平均分,会把一个整体平均分为几部分,选择其中的几部分。根据学生的生活经验和知识背景及课本的知识特点,本节课的教学目标定为:1、知识与技能:经历解决问题的过程,能根据分数的含义,利用整数乘、除法来解决问题。2、过程与方法:通过分一分、拿一拿,理解情境中的数量关系,探求解决求一个数的几分之几的方法.3、情感态度与价值观:感悟数形结合的思想,初步了解分数的在实际生活中的应用和价值。本课教学的重点是:引导学生根据分数含义分析数量关系,并用整数乘除法来解决问题。
一、说教材 1、教学内容 九年义务教育小学数学四年级上册第一单元“大数的认识”的第九课时。 2、教材分析教材在亿以内数的认识的基础上教学亿以上数的认识。通过地球不堪人口之重负的拟人素材生动地引入世界人口的总数让学生在感受大数、学习亿以上数的读法的同时了解到地球上人口太多了如不控制将要威胁到人类的生存环境渗透有关人口知识和环境保护教育。 3、教学重点、难点 教学亿以上数的读法与写法。 亿以上中间和末尾有0的数的读法及写法。 4、教学目标 根据本节课的重、难点和内容的特点我制定了以下三条教学目标 (1)理解多位数的读、写法在具体情境中能够根据数级正确地读写出多位数体会并能阐述多位数读数的规律。 (2)结合现实素材使学生感受亿以上数的意义培养学生的数感。 (3)让学生在活动中体会数学与现实生活的联系培养学生用数学的眼光观察生活和应用数学的意识培养学生自主探索自我评价和善于合作的能力。
说课内容:我说课的内容是人教版小学数学一年级上册第五单元、第三课时、6、7的加减法应用。我将从教材分析,教学目标分析,教学重难点及突破方法,教学流程设计,4个方面来进行说课。一、说教材:1、内容:本节课是在学生学习6、7加减法的基础上展开教学的,教材第一次出现用情景图呈现数学问题的形式,呈现了一个简单求和求差的数学问题,使学生明确、知道两个相关的信息和一个相关的问题,就构成了一个简单的数学问题。2、地位:从整个知识网络来看,它也标志着数学应用题数学的开始,是向后面的文字应用题过度的桥梁。二、说教学目标通过对教材的分析,确立了如下教学目标:1.通过学习使学生认识理解大括号和问号的意义,能借助图画正确分析题意。2.会用6和7的加减法解决生活中简单问题,使学生切实感受到用学过的数学知识去解决简单的实际问题的过程。3.初步感受数学与日常生活的密切联系,体验学数学、用数学的乐趣。
一、教学内容:人教版小学数学四年级上册第23~25页全部内容二、编写意图:“计算工具的认识”分别介绍了计算工具算盘和计算器,还安排了有关计具的发展历史和现状的阅读材料。教材安排了较多的直观图战士了算盘和计算器的实际应用、算盘和计算器的结构,比较形象直观,让学生在观察和活动中认识常用的计算工具。三、教学目标:鉴于以上分析,我把本课的教学目标定位为以下三个方面:1.让生初步认识计算器,了解计算器的基本功能,会使用计算器进行大数目的计算,通过计算探索发现一些简单的数学规律,解决一些简单的实际问题。2.通过对计算器的运用,体验用计算器进行计算的优点,进一步培养对数学学习的兴趣,感受用计算器计算在人类生活和工作中的价值。3.在自主探究的学习过程中培养学生的问题意识和创新意识,在解决实际问题中,渗透节约、环保等方面意识,使学生受到思想教育。
1、继续抓好常规教研,每次教研要有计划、有主题、有目标,谈到的问题要解决,讨论要有结果,从而使活动效果最大化。 2、以新课标测试的形促进老师们新课标理论学习,讨论对新课标的理解和运用程度,不断讨论和摸索在课堂教学中如何更大程度地渗透新课标的理念。 3、聚焦课堂,加强教学展示和相互学习。继续开展研究课、汇报课、展示课等活动,突出新课标理念、以创设情景,主动参与的课堂教学设计为研究重点,进行“研、讲、评、议”一条龙教研活动,充分体现集体智慧,集思广益,提高教师的授课质量,提高课堂效率,严把“有效教学”关,打造高效课堂。
1.知识与技能:体验探究活动,了解瓶子的对称造型特点,掌握对折纸的基本方法。运用折、剪、撕、贴等多种方法美化装饰创作作品。 2.能力目标: 培养学生对折纸瓶子和装饰美化的能力,提高学生创新表现、动手实践、观察生活和审美感知的能力。3.情意目标:激发学生对美术学习活动的兴趣、对传统文化的认同和热爱之情,体验创造成功的快乐,能够运用自制的瓶子作品美化生活环境。明确了教学目标,本课的重难点也就显而易见了:教学重点是:感受瓶子背后蕴含的文化,了解折剪的基本方法及简单的纹饰设计。教学难点是:剪对称形的瓶子时,如何使瓶子的大小合适、外形美观,给人美的享受。
1.知识与技能:体验探究活动,了解瓶子的对称造型特点,掌握对折纸的基本方法。运用折、剪、撕、贴等多种方法美化装饰创作作品。 2.能力目标: 培养学生对折纸瓶子和装饰美化的能力,提高学生创新表现、动手实践、观察生活和审美感知的能力。3.情意目标:激发学生对美术学习活动的兴趣、对传统文化的认同和热爱之情,体验创造成功的快乐,能够运用自制的瓶子作品美化生活环境。明确了教学目标,本课的重难点也就显而易见了:教学重点是:感受瓶子背后蕴含的文化,了解折剪的基本方法及简单的纹饰设计。教学难点是:剪对称形的瓶子时,如何使瓶子的大小合适、外形美观,给人美的享受。
一、说教材小数乘以小数的原有基础是整数乘整数、小数乘整数。它为小数除法、小数四则混合运算和分数小数四则混合运算学习奠定基础,占据着重要的地位。小数乘小数是五年级上册第一单元小数乘法的难点和关键,一共涉及三个知识点,1.确定积小数点位置;2.积位数不够时添“0”补足;3.小数连乘的探究。第一课时是根据整数乘法算出积后来确定积的小数点位置,不涉及积位数不够时用0来补足的知识。本课时的关键在于理解算理,归纳算法。根据以上的分析及新课程标准的要求,考虑到学生已有的认知结构,对整数乘法算理的掌握,能对小数乘整数积小数点的定位,制定以下的教学目标:知识与能力:共同探讨,理解并掌握小数乘小数的算理及算法;过程与方法:在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想;
一、说教材《加减混合》是义务教育课程标准实验教科书数学(人教版)二年级上册第28页的例3和例4。这个知识点是在上一课时《连加、连减》知识的基础上进行的一个提升和知识点的整合。二、教学目标 1、结合具体的情境,让学生经理探索加减混合运算的计算方法的过程。 2、使学生掌握100以内数加减混合运算的计算方法,并学习笔算的书写格式,掌握简便写法。 3、让学社在解决简单问题的过程中,体会数学与生活的密切联系。三、说教学重点难点重点:正确计算加减混合式题。 难点:优化算法,正确计算加减混合式题。 四、说教学程序 根据本节课的特点,我准备采用演示法、比较法、谈话法、讨论法和练习法等多种教学方法,设计了如下教学过程:
一、说教材1、教学内容:本课内容选自2013人教版小学数学二年级上册第一单元《长度单位》例1、例2、例3的教学内容。 2、教材所处的地位和作用本课是在学生已经对长短的概念有了初步的认识,并学会直观比较一些物体长短的基础上来学习一些计量长度的知识,这些知识可以帮助学生认识长度单位,初步建立1厘米的长度观念。 3、学情分析二年级学生经过一年的学习,已经认识了100以内的数,学会了一些简单的统计方法。这些知识储备为我们进一步学习新知识打下基础。二、说教学目标1、知识与技能目标:统一长度单位,建立1厘米的观念,会用厘米测量。2、情感目标:在小组合作测量的过程中,培养学生乐于探究的学习态度,学会与他人合作。体验知识的形成过程,进一步体验学习成功带来的喜悦。
1、教材的地位《观察物体》这节课是人教版《义务教育教科书?数学(二年级上册)》第五单元的第一课时。教材是从学生已有生活经验出发以及已学习了位置知识的基础上,借助于生活中的实物和学生的操作活动进行教学的。主要帮助学生建立初步的空间观念,发展他们的形象思维,通过一些活动,使学生认识到,从不同的角度观察同一个物体,看到的物体的形状可能是不同的,并让学生初步体会局部与整体的关系,通过这部分内容的教学,不但可以使学生学会从不同的角度观察物体,而且又为以后学习有关几何图形的知识打下坚实的基础。 2、教学目标依照《新课程标准》的要求,结合教材和学生的特点,从知识与技能、过程与方法和情感态度价值观三方面制定以下教学目标:(1)能辨认并能想象从不同位置看到的简单物体的形状。 (2)在探究中,学生掌握全面、正确的观察物体的基本方法,并感受到局部与整体的关系。 (3)通过活动,感受数学与生活的联系,培养学生观察物体的兴趣和热情。3、教学重点、难点由于小学二年级的学生方位感不强,他们往往前后不分,左右搞错,观察周围的事物也是比较单纯、直观地看表面。
二、学情分析五年级的学生具备了一定的思维能力,因此,教学过程中创设的问题情境力求贴近学生的生活,从而引起学生的思考。由于学生概括能力较弱,推理能力还有待发展,很大程度上还需要依赖具体形象的经验材料来理解抽象逻辑关系。所以在教学时,注重让学生充分试验、收集、分析数据,帮助他们对生活中的常见现象发生的可能性进行正确的分析和判断,所以本节课中,应多为学生创自主学习、合作学习的机会,让他们主动参与、勤于动手,从而乐于探究。二、教学目标新的课程标准中倡导教师要关注每一个学生的发展,教师应该是教育教学的促进者和引导者,因此,我结合本节课的内容和学生的实际,并从知识与技能、过程与方法、情感态度与价值观的三维目标整合的角度特确定本节课的教学目标 1.通过试验操作,懂得有些事情的发生是确定的,有些则是不确定的,并用“一定”“不可能”“可能”等词语来描述知道事情发生的可能性是有大有小的,且可能性的大小与物体数量有关。2.经历猜测、试验、收集与分析试验结果等过程。 3培养学生的随机观念以及培养学生判断、推理和合作探究的能力。
二、说教学目标知识与技能:初步理解“方程的解”和“解方程”的含义,以及之间的联系和区别。能用等式的性质解形如X±a=b的方程,掌握解方程的格式和写法。初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。过程和方法:通过探索、讨论、交流等活动,让学生初步理解“方程的解”和“解方程”的概念。经历运用等式的性质探究方程解法的过程,体会方程的解法和等式的性质之间的联系。情感、态度与价值观:1. 学生能积极参与数学学习活动,对数学有好奇心和求知欲。2. 在观察、猜想、验证等数学活动中,培养学生的数学素养。重点:方程的解和解方程的概念,初步掌握用等式性质来解简易方程的方法。难点:区别方程的解和解方程的含义。解方程的算理。三、说教法与学法教法:新课标指出,教师是学习的组织者、引导者、合作者,充分发挥学生的主体性。根据这一理念,我在教学中通过观察、猜想、验证等方式,自主探索、自主学习。有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。学法:①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;②让学生学会自主发现问题,分析问题,解决问题的方法。
一、 说教材1、教材内容:人教版小学数学第十册《解简易方程》及练习二十六1~5题。2、教材简析:本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。3、教学目标:(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
回答“朝闻道夕死可矣”是哪位古人的名言,和我校的校园文化有何历史渊源?同学们异口同声地回答是“孔子”,并有自豪的表情。我感到本节课达到了预期效果。二、本节课的一些特点和成功之处:1、 从重知识的传授转向重能力的培养。注重了培养学生的想象能力、善于发现、观察和审视美的能力、注重培养学生的质疑能力、以及类比推理能力。2、 注重物理课程的校本化、注重学科与校园文化、中国古代文化相融合。将屈原、孔子等人的思想与本节课所提倡的科学精神进行了恰当的联系。将中国古代朴素的时空观如“天上一日,地上一年”、大家耳熟能详的“一微尘映世界、一刹那含永远”等思想与爱因斯坦的“相对论”进行了类比。将中国古代的“太极图”与哈勃望远镜拍摄的“涡旋星系”作类比,这不但能激发学生的想象力、类比能力,还能增强民族自豪感和对学校的热爱。
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
光的速度约为3×108米/秒,一颗人造地球卫星的速度是8×103米/秒,则光的速度是这颗人造地球卫星速度的多少倍?解析:要求光速是人造地球卫星的速度的倍数,用光速除以人造地球卫星的速度,可转化为单项式相除问题.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是这颗人造地球卫星速度的3.75×104倍.方法总结:解整式除法的实际应用题时,应分清何为除式,何为被除式,然后应当单项式除以单项式法则计算.三、板书设计1.单项式除以单项式的运算法则:单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2.单项式除以单项式的应用在教学过程中,通过生活中的情景导入,引导学生根据单项式乘以单项式的乘法运算推导出其逆运算的规律,在探究的过程中经历数学概念的生成过程,从而加深印象
一、情境导入1.计算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根据多项式乘以单项式的运算归纳出多项式除以单项式的运算法则吗?二、合作探究探究点:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根据多项式除以单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.