第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明. 活动目的:回顾上节知识,为本节课的展开打好基础.教学效果:学生举手发言,提问个别学生.第二环节:探索命题的结构活动内容:① 探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(4)如果一个四边的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.② 总结命题的结构特征(1)上述命题都是“如果……,那么……”的形式.(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论.
一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
2.法解二元一次方程组,是提升学生求解二元一次方程的基本技能课,在例题的设置上充分体现化归思想.2.在学习二元一次方程组的解法中,关键是领会其本质思想——消元,体会“化未知为已知”的化归思想.因而在教学过程中教师通过对问题的创设,鼓励学生去观察方程的特点,在过手训练中提高学生的解答正确率和表达规范性,提升学生学会数学的信心,激发学习数学的兴趣.3.通过精心设计的问题,引导学生在已有知识的基础上,自己比较、分析得出二元一次方程组的解法,在巩固训练活动中,加深学生对“化未知为已知”的化归思想的理解.特别是如何由代入消元法到加减消元法,过渡自然。让学生深刻的体会到二元一次方程是一元一次方程的拓展,二元一次方程组又要通过“消元”,转化为一元一次方程求解,这样的转化,不仅有助于学生掌握知识、技能和方法,提高学习效率,而且还加深了对数学中通性和通法的认识,体会学习数学和研究数学的规律,提升数学思维能力.
1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数 的平方等于 ,即 ,那么这个正数 就叫做 的算术平方根,”的“正数 ”,即被开方数是正的,由平方的意义, 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
第一环节感受生活中的情境,导入新课通过若干图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?——§3.1确定位置。第二环节分类讨论,探索新知1.温故启新(1)温故:在数轴上,确定一个点的位置需要几个数据呢? 答:一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置。总结得出结论:在直线上, 确定一个点的位置一般需要一个数据.(2)启新:在平面内,又如何确定一个点的位置呢?请同学们根据生活中确定位置的实例,请谈谈自己的看法.2.举例探究Ⅰ. 探究1(1)在电影院内如何找到电影票上指定的位置?(2)在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?(3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示?(5,6)表示什么含义? (4) 在只有一层的电影院内,确定一个座位一般需要几个数据?结论:生活中常常用“排数”和“号数”来确定位置. Ⅱ. 学有所用(1) 你能用两个数据表示你现在所坐的位置吗?
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
第五环节:课堂小结内容:师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.目的:鼓励学生通过本节课的学习,谈谈自己的收获与感受,加深对 “温故而知新” 的体会,知道“学而时习之”.设计效果:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识.第六环节:布置作业课本习题5.2教学设计反思1.引入自然.二元一次方程组的解法是学习二元一次方程组的重要内容.教材通过上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618= 1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试 验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割 点 ;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.●板书设计
(一)教学内容:教科书数学一年级上册第19-20的内容及练习二的第8-10题。(二)教材所处地位及作用:“几和几”数的组成知识是学习加减法的基础,这是一年级教学要注意的部分。在认数教学中,主要通过实物演示和动手操作的游戏,使学生知道了数的组成。(三)教学目标、重点、难点:教学目标:(1)使学生通过动手操作掌握5以内数的组成。(2)使学生能熟练地说出5以内数的级成,培养学生的观察、操作、表达能力,初步的自学能力。(3)培养学生认真做练习的良好习惯,积极动脑思考的学习品质及互助,创新意识和评价意识。教学重点:让学生通过动手操作掌握5以内数的组成教学难点:引导学生通过动手操作并掌握5以内数的组成。二、说教法本课时教学方法主要体现以下几点:1、创设游戏充分感知,然后再交流,使学生在主动参与知识的形成过程中体验到成功的快乐。最后,为学生创设了“分小棒”等游戏,让学生不断地动手操作与合作讨论中自己掌握知识,并初步培养学生的自学能力。
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
亲爱的老师们、同学们:上午好!我是来自高三(5)班的周xx,今天我发言的主题是“胸怀梦想,做更好的自己”。今天是XX年的3月27日,距离高考还有72天,三年前我怀揣着梦想与希望走进金沙,一千多个日夜,我时刻记住自己的理想,做更好的自己。汪国真曾说过:“凡是到达了的地方,都是属于昨天,哪怕那山再青,那水再秀,那风再温柔。太深的流连便成了一种羁绊,绊住的不仅是双脚,还有未来。”诗人看似谈的是进退间的从容,我却认为,它实际上囊括了对生命的解读:无论经历几多浮沉,万不要让繁花落寞埋没了你,你得清楚心里究竟想要什么。心中有光,才能一路坚定不移,执着向前。我们金沙人即使如此,只有胸怀梦想,才能奔向远方,做更好的自己。在这里,我想问问所有一起奋战的高三同学们:“你们还记得初进高中时的梦想吗?”高三的一模考试刚结束不久,和其它的考试一样,在成绩公布的那一刻,自然又是几家欢喜几家愁。许多同学在收到成绩单是,似是一下子跌入了低谷,未来只剩下迷茫和不确定性。毕竟一模考试的重要性对每一个高三学生来说都是不言而喻的。到了这个时候,每个人的能力基本上都已经到了一个极限,想要经一部是跟艰难的。然而想倒退一步也许只需要片刻的松懈。
谈到志愿者,相信大家并不陌生。联合国将它定义为“不以利益、金钱、扬名为目的,而是为了近邻乃至全世界进行贡献的活动者”,并于1985年12月17日,第40届联合国大会上,把每年12月5日定为“国际志愿者日”,目的是为了在全世界范围内弘扬志愿者精神。如今已有100多个国家积极响应,我国也在此之列。中国是礼仪之邦,自古就有“君子贵人贱己,先人而后己”之说,依靠自己的力量去帮助他人,将爱的温暖在人与人之间传递,让社会更和谐,这本身也是个人价值的社会体现,又何乐而不为呢?我们都还记得那不平凡的XX年,中国经历的年初的特大雪灾,地震和8月在京举行的奥林匹克运动会。这些考验,向全世界展示了一个崛起强国的巨大力量,和国人伟大的民族精神。在这些重大事件中,都可以见到活跃着的一些身影,是的,他们是志愿者。他们奋不顾身赶赴灾区,运输救灾物质,帮助受难群众。他们不计名利,默默奉献,为人们重建家园,他们用爱心、关怀、抚慰人们受伤的心灵。他们以热情、礼貌、智慧向来自四面八方的宾朋展示中国的魅力。当我们再回想起这一幕幕场景时,怎能忘记这些可爱的志愿者们,所付出的一切呢?
同学们,听说过《两袖清风》这个成语故事吗?这个成语故事说的是明朝正统年间,宦官王振以权谋私,每逢朝会,各地官僚为了讨好他,都献以珠宝白银,巡抚于谦每次进京奏事,总是不带任何礼品。他的同僚劝他说:“你虽然不献金宝、攀求权贵,也应该带一些著名的土特产如线香、蘑菇、手帕等物,送点人情呀!”于谦笑着举起两袖,风趣地说:“带有清风!”以示对那些阿谀奉承之贪官的嘲弄。两袖清风的成语从此便流传下来。古往今来,有多少清正廉洁、务实为民的清官受到百姓的崇敬与爱戴,他们的形象深入人心,他们的故事久久传颂。一代清官包公、海瑞的故事热映荧屏,久演不衰;人民公仆孔繁森、牛玉儒、任长霞的事迹震撼人心,影响甚广。是的,无论历史如何变迁,无论时代怎样发展,廉洁永远是时代的呼唤,廉洁永远是人民的期盼。
同志们:今天我们召开集团公司一季度经营工作例会暨资金调度会,主要任务是总结分析集团公司今年以来的经济运行情况,查摆存在的问题及不足,提出具体解决措施,研究部署下一阶段工作,为今后各项工作的开展打下坚实基础。刚才,各子公司分别汇报了今年以来的生产经营情况,各分管领导也针对各子公司存在问题提出了具体的意见,很有针对性和指导性,大家回去之后要认真贯彻落实。针对此次会议内容,我再提几点意见:一、铆足干劲、奋力冲刺,力争完成第一季度经营指标*-*月份,集团公司实现营业收入*亿元,完成年度计划的*%,同比下降*%;利润总额*亿元,完成年度计划的*%,同比增长*%;归母净利润*亿元,完成年度计划的*%,同比增长*%;资产总额*亿元,较年初下降*%;资产负债率*%,较年初下降*个百分点。从经营数据来看,集团公司想要完成第一季度的经营指标以及全年的经营指标,任务还是比较艰巨的。比如利润方面**板块占比很高,如果单靠贸易和生产,是没办法实现利润目标的,大家要看到核心问题所在。时间也过得很快,转眼间*月份已经过了一周了,我们一定要增强紧迫感和危机感,铆足干劲,加足马力,奋力冲刺,抱着分秒必争的决心和毅力去干,才有可能完成好年初制定的任务目标。
(一)结构不够优。一是年龄结构不合理,编内人员(公务员和事业编制人员)年龄在*周岁以下的只有*人,占编内人员*%。二是学历偏低,学历为全日制大专及以下的有*人,占*%,硕士研究生只有*人;三是专业化水平不高,具有专业技术职称的只有*人,占比*%,其中工程师职称只有*人,难以适应专业化、高质量工作的需求。作为中坚力量的*名中层干部中,大专及以下学历占*%,专业型干部不足*%,编外人员占一半以上。
在经济社会跨越发展的同时,这些年,x农业发展也呈现出乘风破浪、阔步前行的良好态势。2020年全省农业增加值增长x%,由全国第x位上升到第x位。我到x工作半年多,深刻感到x既是“美丽公园省”,也是“美食大观园”,真切感受到x农产品和特色食品等“x货”的独特魅力。可以说,“x货”是x自然风光、民族风情、特色风物的完美结晶和集大成者,今天集中推荐展示的x个单品、x个企业及x个公共品牌是“x货”的名优产品和优强品牌。
在经济社会跨越发展的同时,这些年,x农业发展也呈现出乘风破浪、阔步前行的良好态势。2020年全省农业增加值增长x%,由全国第x位上升到第x位。我到x工作半年多,深刻感到x既是“美丽公园省”,也是“美食大观园”,真切感受到x农产品和特色食品等“x货”的独特魅力。可以说,“x货”是x自然风光、民族风情、特色风物的完美结晶和集大成者,今天集中推荐展示的x个单品、x个企业及x个公共品牌是“x货”的名优产品和优强品牌。
(六)当堂达标(练习二、三 10分钟)练习二让学生口答,通过练习,巩固学生对直线、射线、线段表示方法的掌握。练习三让学生去黑板板演,教师检验对错并重点强调几何语言的表述。文字语言和图形语言之间的转化是难点,着重练习文字语言向图形语言的转化,提高几何语言的理解与运用能力。当堂达标是检查学习效果、巩固知识、提高能力的重要手段。通过练习,学生会体验到收获和成功,发现存在的不足,教师也及时获得信息反馈,以便课下查漏补缺。 (七)小结(3分钟)教师提问“这节课我们学了哪些知识?”请学生回答,教师做适当补充。课堂小结对一节课起着“画龙点晴”的作用,它能体现一节课所讲的知识和数学思想。因此,在小结时,教师引导学生概括本节内容的重点。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。