我们遇到的往往就是这样的方程组,我们要想比较简捷地把它解出来,就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.请大家把解答过程写出来.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.将2?y代入①,得:3?x.根据上面几个方程组的解法,请同学们思考下面两个问题:(1)加减消元法解二元一次方程组的基本思路是什么?(2)用加减消元法解二元一次方程组的主要步骤有哪些?(由学生分组讨论、总结并请学生代表发言)[师生共析](1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.(2)用加减法解二元一次方程组的一般步骤是:①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.②加减消元,得到一个一元一次方程.③解一元一次方程.
[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?根据所给条件写出简单的一次函数表达式是本节课的重点加难点,所以在解决这一问题时及时引导学生总结学习体会,教给学生掌握“从特殊到一般”的认识规律中发现问题的方法。类比出一次函数关系式的一般式的求法,以此突破教学难点。在学习过程中,我巡视并予以个别指导,关注学生的个体发展。经学生分析:(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);(2)当x=1760时,y=0.05×(1760-1600)=8(元);(3)设此人本月工资、薪金是x元,则19.2=0.05×(x-1600) X=1984五.教学效果课前:通过本节课的学习,教学目标应该可以基本达成,学生能够理解一次函数和正比例函数的概念,以及它们之间的关系,并能正确识别一次函数解析式,能根据所给条件写出简单的一次函数表达式,且通过本节课的学习学生的抽象思维能力,数学应用能力都能有所提升,
2、测量。各个组的成员根据上面的设计方案在小组长的带领下到操场测量相关数据。比一比,哪组最先测量完并回到教室?(二)根据测量结果计算相关物体高度。时间为2分钟。要求:独立计算,并填写好实验报告上。(三)展示测量结果。时间为3分钟。各组都将自己计算的结果报告,看哪些同学计算准确些?(四)整理实验报告,上交作为作业。此活动主要是让学生通过动手实践,分工合作,近一步理解三角函数知识,以及从中体会学习数学的重要性,培养学生学习数学的兴趣和激情,增强团队意识。四、小结:本节课你有哪些收获?你的疑惑是什么?(2分钟)1、 知识上:2、 思想方法上:五、板书设计1、目标展示在小黑板上2、自主学习的问题展示在小黑板上3、学生设计的方案示意图在小组展示板上展示
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。(四)作业布置加强“教、学”反思,进一步提高“教与学”效果。四、说板书设计采用了如下板书,要点突出,简明清晰。一次函数正比例函数图像的画法:确定两点为(0,0)和(1,K)一次函数选择的两点为:(0,k)和(-b\k,0)五、说课后小结实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时往左拐。3,讲解补充例题,例1:判断:①x=2是不等式4x<9的一个解.()②x=2是不等式4x<9的解集.()例2、将下列不等式的解集在数轴上表示出来:(1)x<2(2)x≥-2(设计意图:例1是让学生理解不等式的解与不等式的解集。联系与区别,例2揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)4.巩固练习:课本44页练习2,3题5.归纳总结,结合板书,引导学生自我总结,重点知识和学习方法,达到掌握重点,顺理成章的目的。6.作业:课本49页习题1,2题
一、说教材:等腰三角形是北师大版初中八年级下册数学教材第一章第一节的教学内容,本节是轴对称图形的应用,是研究等腰三角形的开篇。通过本章节的学习,可以丰富和加深学生对已学图形的认识,为以后的图形学习和证明打好基础。本节在编排上考虑学生的认知规律,从学生容易接受的动手操作找规律开始到几何画板的验证再过渡到几何证明与应用。根据课程标准,确定本节课的目标为:【教学目标】1.知识与能力 理解并掌握等腰三角形的定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题.2.过程与方法通过动手操作、动态演示等方法,培养学生思考探究数学的能力;通过例题与练习,提高学生添加辅助线解决问题的能力。3.情感、态度与价值观 在探索等腰三角形性质的过程中体会轴对称图形的美,感受数学与生活的联系;在例题教学中,感受数学之美;培养学生分析解决问题的能力,使学生养成良好的学习习惯.
二、教法分析为了让学生较好掌握本课内容,本节课主要采用观察法、讨论法等教学方法,通过创设情境,使学生由浅到深,由易到难分层次对本节课内容进行掌握。三、学法分析本课要求学生通过自主地观察、讨论、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。四、教学过程创设问题情景,引入新课活动内容:寻找不等的量 课本例一,例二设计目的:学生体会在现实生活中除了存在许多等量关系外,更多的是不等关系的存在,并通过感受生活中的大量不等关系,初步体会不等式是刻画量与量之间关系的重要数学模型。经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。课本例四,例五设计目的:培养学生数学抽象能力,提高把实际问题转化为数学问题的能力。六.课堂小结体会 常量与常量间的不等关系变量与常量间的不等关系变量与变量间的不等关系
通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)4、随堂练习。(约5分钟)76页第一题,共3个小题。教学效果:在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。5、数学理解(约5分钟)教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。补充例3 计算(xy-x2)÷ ? 教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。
Ⅵ.活动与探究某种“15选5”的彩票的获奖号码是从1~15这15个数字小选择5个数字(可以重复),若彩民所选择的5个数字恰与获奖号码相同,即可获得特等奖.小明观察了最近100期获奖号码,发现其中竟有51期有重号(同一期获奖号码有2个或2个以上的数字相同),66期有连号(同一期获奖号码中有2个或2个以上的数字相邻).他认为获奖号码不应该有这么多重号和连号,获奖号码可能不是随机产生的,有失公允.小明的观点有道理吗?重号的概率大约是多少?利用计算器模拟实验可以估计重号的概率.[过程]两人组成一个小组,利用计算器产生1~15之间的随机数.并记录下来,每产生5个随机数为一次实验,每组做10次实验,看看有几次重号和连号.将全班的数据汇总集中起来,就可估计出1~15之间的整数中随机抽出5个数出现重号和连号的概率.
回顾整节课的设计,我主要着力于以下三个方面:1.关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:(1)通过“合成代数式”、“赋予分式实际意义”两个活动,激发兴趣,吸引学生参与活动;(2)通过“互举例子”、“填表探究”两个活动,鼓励学生主动参与活动;(3)通过“应用新知”这个环节,促进学生参与活动。2.关于教与学方法的选择:我在设计中始终关注:如何精心组织活动,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导——发现教学法”,具体做法如下: (1)用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;(2)加强应用性,通过“应用新知”、“深化拓展”两个环节,密切分式与现实生活及其他学科的联系,发展数学应用意识,突出分式的模型思想。
五、说课件设计及板书随着教育现代化的发展,多媒体课件在课堂中辅助教师授课,帮助学生练习,已成为非常重要的教学辅助工具之一。在本节课的授课过程中,本人也使用了多媒体教学课件。课件在设计上遵循实用性原则、辅助性原则、创新性原则,紧紧围绕教学目标,服务于课堂教学,设计科学合理,制作精美细致;课件的有效使用很好地优化了课堂,极大地扩充了容量,有力地突出了重点,轻松地化解了难点;使学生学习兴趣浓郁,使教学效率大大提高;特别是在演示多边形对应角相等的设计,使这一教学环节变得更直观、更高效、更方便,让学生轻松地进行探究,很好地保护了学生的学习热情,方便了教师的策略实现。在授课过程中,我又不是完全依赖于多媒体课件,而成了课件反映员;我充分发挥教师的主导作用,合理地利用黑板板书有关内容,灵活动配合多媒体课件为学生呈现有关知识点,以弥补课件的不足。
在解决问题的过程中,学生使用到了生活中常见的工具——标杆、镜子等,这些小工具摇身一变就成了学生学习用的学具。使学生感觉到利用身边的工具完全可以达到解决问题的目的。八、本节得失本节课意在更好地让学生在实际操作中掌握相似三角形的判定与性质。这节课我感觉成功之处在于:1、立足于问题情境的创设。在课堂教学中创设良好的学习情境,充分激发学生求学热情。当学生的学习投入到教师创设的学习情境中,就会形成主动寻求知识的内在动力。学生在这种学习情境中主动学习到知识,比讲授给他们的要丰富得多,而且更能激发他们的学习兴趣。2、注意培养学生的问题意识。问题解决后,教师应让学生从解决的问题出发,通过对题目的拓展,引导学生用新的思维去再次解决新问题,这样不仅让学生掌握了更多的知识,还能让学生的思维得到升华。3、培养学生自主探索、合作交流的学习方法和习惯。
接着,引导学生回答命题1的题设、结论,教师把命题1的图示画在黑板上,得到以下的数学表达式。已知:如图,△ABC∽△A/B/C/、△ABC与△A/B/C/的相似比是K,AD、A/D/是对应高。求证:AD/A/D/=K首先让学生回忆,证明线段成比例学过哪些方法,接着引导学生分析证明思路:要证AD/A/D/=K,根据图形学生能找到含对应高和对应边的两对三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要证AD/A/D/=K,则应有△ADB∽△A/D/B/,由条件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。随后,学生口述教师板书规范的证明过程。接着问学生还有哪些证明方法?同理可证得其他两边上的对应高的比等于相似比,所以命题1具有一般性。而对于命题2、命题3的数学表达式和证明方法与命题1类似,所以为了提高教学效率,用投影依次将命题2、命题3的已知、求证和题图显示出来,并指导学生课堂练习证明这两个命题。
(三)如图, 中, ,AB=6厘米,BC=8厘米,点 从点 开始,在 边上以1厘米/秒的速度向 移动,点 从点 开始,在 边上以2厘米/秒的速度向点 移动.如果点 , 分别从点 , 同时出发,经几秒钟,使 的面积等于 ?拓展:如果把BC边的长度改为7cm,对本题的结果有何影响?(四)本课小结列方程解应用题的一般步骤:1、 审题:分析相关的量2、 设元:把相关的量符号化,设定一个量为X,并用含X的代数式表示相关的量3、 列方程:把量的关系等式化4、 解方程5、 检验并作答(五)布置作业1、请欣赏一道借用苏轼诗词《念奴娇·赤壁怀古》的头两句改编而成的方程应用题, 解读诗词(通过列方程,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?本题强调对古文化诗词的阅读理解,贯通数学的实际应用。有两种解题思路:枚举法和方程法。
注意强调概念理解不到位的方面:① tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”,若用三个字母表示角则“∠”不能省略,如“∠ABC的正切表示为tan∠ABC”;② tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③ tanA不表示“tan”乘以“A”。通过给出直角三角形的任两边的长,让学生求∠A,∠B的正切及时强化学生对概念的3、正切函数的应用理解通过实际问题的解答进一步了解梯子的倾斜程度、坡度与正切函数的关系;对学生进行正切的变式训练,让学生理解不管角的位置如何改变,只要角的大小不变则其正切值是不变的。练习的安插注意梯度,让不同的学生有不同的发展。4、最后小结本节课的知识要点及注意点五、达标测试具体思路:把几个问题分为四个等级,方便对学生的了解;通过评价让学生对自己的学习也做到心中有数。
1、圆的半径是 ,假设半径增加 时,圆的面积增加 。(1)写出 与 之间的关系表达式;(2)当圆的半径分别增加 , , 时,圆的面积增加多少。【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。2、篱笆墙长 ,靠墙围成一个矩形花坛,写出花坛面积 与长 之间的函数关系式,并指出自变量的取值范围。【设计意图】此题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。(六) 小结思考本节课你有哪些收获?还有什么不清楚的地方?【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。(七)布置作业,提高升华必做题:课本P39-40随堂练习第1题,习题2.1第1题;
(设计意图:因为圆中有关的点、线、角及其他图形位置关系的复杂,学生往往因对已知条件的分析不够全面,忽视某个条件,某种特殊情况,导致漏解。采用小组讨论交流的方式进行要及时进行小组评价。)(3) 议一议( 如图,OA、OB、OC都是圆O的半径∠AOB=2∠BOC, 求证:∠ACB=2∠BAC。)(设计意图:通过练习,使学生能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。)(三)说小结首先,通过学生小组交流,谈一谈你有什么收获。(提示学生从三方面入手:1、学到了知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想。)然后,教师引导小组间评价。使学生对本节内容有一个更系统、深刻的认识,实现从感性认识到理性认识的飞跃。(四)、板书设计为了集中浓缩和概括本课的教学内容,使教学重点醒目、突出、合理有序,以便学生对本课知识点有了完整清晰的印象。我只选择了本节课的两个知识点作为板书。
设计意图这一组习题的设计,让每位学生都参与,通过学生的主动参与,让每一位学生有“用武之地”,深刻体会本节课的重要内容和思想方法,体验学习数学的乐趣,增强学习数学的愿望与信心。4.回顾反思,拓展延伸(教师活动)引导学生进行课堂小结,给出下列提纲,并就学生回答进行点评。(1)通过本节课的学习,你学会了哪些判断直线与圆位置关系的方法?(2)本节课你还有哪些问题?(学生活动)学生发言,互相补充。(教师活动)布置作业(1)书面作业:P70练习8.4.41、2题(2)实践调查:寻找圆与直线的关系在生活中的应用。设计意图通过让学生课本上的作业设置,基于本节课内容和学生的实际,对课后的书面作业分为三个层次,分别安排了基础巩固题、理解题和拓展探究题。使学生完成基本学习任务的同时,在知识拓展时起激学生探究的热情,让每一个不同层次的学生都可以获得成功的喜悦。
通过与学生讲解切线长定义,让学生在参与、合作中有一个猜想,再进一步提出更有挑战性的问题,能否用数学的方法加以证明。问题的解决,使学生既能解决新的问题,同时应用到全等、切线的性质等知识,同时三条辅助线中,两条运用切线性质添加、一条构造全等。证明后用较规范的语言归纳并不断完善。(3) 应用新知加深理解通过前面的学习学生们已经对切线长定理有了较深刻的了解。为了加深学生对定理的认识并培养学生的应用意识学习例1、例2。例1让学生自己独立完成,加深对切线长定理的理解,老师进行点评,对于例2,由师生共同分析完成,交进行示范板书。(4) 巩固与提高此训练题分为二个层次,目的在于巩固新学的定理,并将所学的定理应用到旧的知识体系中,使学生的知识体系得到补充和完善。(5) 归纳与小结通过小结,使知识成为系统帮助学生全面理解,掌握所学的知识。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。