
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.

对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.

尊敬的老师,亲爱的同学们:早上好!若白驹过隙般的一瞬,自己似乎还沉浸在寒假的美好时光中,抬头见,眼前已是新的学期,新的开始。我们将在此洒下汗水,留下一个个坚实的脚印,向终点迈进。七年级的学弟学妹们:经过一个学期的洗礼,我想你们也早已适应了我们11中的生活。你们有足够的时间,别为前方的的未知感到迷茫,要脚踏实地,扎扎实实的打好学习基石,珍惜现在的每一分每一秒!做到:总结昨天,珍视今天,看向明天!八年级的学弟学妹们:生物地理计算机的结业考试是初中阶段会考的起始站。打好这一仗,可以为明年的中考打下坚实的基础。也许有的同学因成绩不理想而彷徨,而不知失措。没关系,抓住这最后的期限,珍惜一分一秒,就会发现它并没有想象中的那么难。

(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

敬爱的老师们,亲爱的同学们:大家早上好!我先给大家讲一个故事:1920年,有一位11岁的美国男孩在踢足球时不小心踢碎了邻居家的玻璃,邻居愤怒不已,向他索赔12.5美元。这12.5美元在当时可谓是天文数字,足够买下125只生蛋的母鸡了。男孩把闯祸的事情告诉父亲,并且忏悔。见儿子为难的样子,父亲拿出了12.5美元说:“这笔钱是我借给你的,一年后你要分毫不差地还给我。”从此,这个男孩每逢周末、假日,便外出辛勤打工。经过半年的努力,他终于挣足了12.5美元,分毫不差地还给了父亲。这个男孩就是后来的美国总统里根。他在回忆这件事时说:“通过自己的劳动来承担过失,使我懂得了什么叫责任。”责任,这两个字很好读,一点也不拗口,但这是个沉甸甸的话题。责任是什么?用歌德的话来讲,就是对自己要求去做的事情有一种爱。这是一个真实的故事。有一个人来他公司应聘,经过交谈,他觉得那个人不适合他们公司的工作。因此,他很客气地和那个人道别。那个人从椅子上站起来时,手指不小心被椅子跳出来的钉子划了一下。那人顺手拿起老板桌子上的镇纸,把跳出来的钉子砸了进去,然后和老板再见。

活动准备:小彩石数个、一个瓶子里装有一些彩石 重点难点:数清楚彩石掉进瓶子的发出的声音次数 活动地点:活动室 活动形式:小组活动 活动过程: 1、教师与幼儿玩游戏,请幼儿猜猜瓶子里装的是什么? 2、教师一粒一粒的向瓶子里装彩石,让幼儿听彩石落进瓶子里的声音。

国旗下的讲话:铭记一二·九 各位老师、同学们:早上好!今天是一二。九运动的纪念日,这个青年学生的爱国运动距今已有73周年了。今天,站在鲜艳的国旗下,让我们一同回顾历史:谁都应该记得1935年的12月9日,谁都不应该忘记“一二。九”这场轰轰烈烈的学生爱国救亡运动。虽然,它早已成为历史,但它的事迹,它的精神,却早已铭刻进了我们每一位炎黄子孙的心中。他们用自己的青春和热血掀起了全国抗日救亡运动新的高潮。今天,我们在这里缅怀一二。九先辈的功绩,心潮澎湃,不能自己。作为新时代的青少年,同学们,我们又应该做些什么?抗战时期的大中学学生,他们把自己的生命和国家的命运、民族的兴亡,紧紧的联系在了一起。而我们,是否也应该象他们一样呢?答案当然是肯定的,但现实又如何呢?台下的有一部分同学,当你在课堂上无精打采的听课时,当你将青春耗费在虚拟的网络时空时,当你沉溺于追逐流行和崇拜明星时,当你盲目的“耍酷”“装帅”,张扬你所谓的“个性”时,不知你是否想到了作为当代青少年那肩头沉重的使命感?

在我们附中的东南角,有一棵高大的木棉树。木棉,是我们广州市的市花,是花园酒店、中国南方航空公司和广州电视台使用的标志,也是XX年第一届亚洲残疾人运动会的吉祥物。每年四月,当北方才刚刚有绿色的影子的时候,火红的木棉已经灿烂耀眼,它火红火红,一朵一朵像绽放的笑脸,像一片一片熊熊的火焰燃烧在枝头,它象征和平、幸福、友谊、安康。(它的花语告诉我们----珍惜身边的人,珍惜眼前的幸福!)可是最近,由于木棉花的花期短、覆盖率少,民间发出是否可以评选“第二市花”的建议,这也使我再次关注我们广州的“英雄花”——木棉。记得小时候,在珠江沿岸,每年燕子唱歌的时候,滨江路的木棉花总是开得最旺盛。吃过晚饭下楼散步,总能捡到一、二十朵掉落的木棉;有时在树下跑过,总能听见那木棉落在地上的声音。每每捡到木棉花,我总是把它们揣在衣服里,到了家,母亲就把较好的收集起来,夏天熬粥。我,就是吃着那又涩又甜的木棉花粥长大的。作为一个土生土长的广州仔,木棉花,就像是我的朋友。

一 减数分裂高一生物减数分裂说课稿各位评委、老师:大家好,我今天说课的题目是高中生物必修2第二章第一节〈〈减数分裂与受精作用〉〉第一部分减数分裂第一课时精子形成过程。接下来我就从以下几个方面来说说这一节课。一、说教材1.教材地位和作用《减数分裂》这一部分内容不仅是第二章的重点内容,也是整本书的重点内容之一。它以必修一学过的细胞学知识、染色体知识、有丝分裂知识和初中生殖种类知识为基础。通过学习,使学生全面认识细胞分裂的种类、实质和意义,为后面学习遗传和变异,生物的进化奠定细胞学基础。2.教学目标(1)知识目标:掌握减数分裂的概念和精子的形成过程;理解减数分裂和受精作用的意义。(2)能力目标:通过观察减数分裂过程中染色体的行为变化,培养学生识图、绘图能力以及比较分析和归纳总结的能力。

本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。

对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?

本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。

由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.

本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.

指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.

说教材(一)、本课在教材中的地位:教材在第3单元介绍了古代中国科技的辉煌。第四单元介绍世界近代科技成就,本课主要介绍了现代中国的科技成就。通过对本课的学习,有利于学生感受中国科技古代辉煌、近代落后、现代又取得很大成就这一重要历程,因此本课在教材中具有重要作用。(二)教学内容分析和课标要求:本课主要介绍新中国成立以来我国科学技术成就及作用。从核研究、航空技术、农业新品种研究、计算机应用、生物技术五方面介绍了新中国成立以来取得的举世瞩目的成就。课标对这部分知识作了如下的要求:列举新中国成立以来科技发展的主要成绩,认识科技进步在现代化建设中的重大作用。根据以上对教材内容的分析和课标要求,我将本课的三维目标确定如下:(三)、教学目标1、知识与能力:识记建国后六十多年来所取得的科技成就;理解科学技术是生产力的论断;探究科技的发展在现代化建设中的重要作用。

活动材料来之于幼儿常态生活《纲要》中指出:幼儿园教育活动的选择要做到“既贴近幼儿的生活来选择幼儿感兴趣的事物和问题,又有助于拓展幼儿的教育和视野”。根据这个原则,教育者必须关注与幼儿最贴近、最生动、最感性的现实生活,通过价值判断、从中发掘、筛选有利于幼儿健康发展的生活作为幼儿园课程的教育内容。同时,活动的内容决定了活动的材料来自于幼儿的日常生活。秋季来临,天气渐凉,小朋友来园时穿外套的越来越多,随着时代的发展,时装潮流同样也影响着孩子们的日常穿着,幼儿外套的款式可谓琳琅满目。外套的色彩、图案、面料、装饰可以说有很多教学价值蕴藏其中,而且我们每天接触的日常用品是最为方便最简便的教学具,不要刻意的制作不要精心的准备,随手可得,又最能引发幼儿对身边事物的关注,继而在关注的基础上发展幼儿相关经验。活动价值在确定目标过程中逐步挖掘在刚开始的活动设想中我对“我的外套”的教学价值分析是:1.观察分辨不同与相同不同在于颜色、花纹图案、大小、材料;相同在于衣服结构衣领衣袖纽扣。2.在生活情境中穿脱、整理的能力。但是继而深入思考一下发现自己把幼儿感知范围散的点很多,范围很宽泛,幼儿的学习是粗浅的、全面的“百科全书”式的。在一个集体活动中如何发挥出更有效的教学价值呢?小朋友的一件外套是不是只有科学常识方面的教学价值了呢?外套上的一些设计的细节不同能不能挖掘更多的教学价值呢?于是我综合分析了外套中隐含的一些教学价值,从幼儿的经验和领域学科特点出发,将常识性的知识经验积累和数学能力相结合重新调整教学设计,对活动的重点进行重新调整:1.在叠放的衣服中找出自己的外套,对观察外套有兴趣。2.尝试在游戏中按外套的一个特征进行分类、数数。活动环节在目标引领下尝试设计

一、说教材: 本课是部编《道德与法治》三年级上册第一单元“快乐学习”中的第三课,本课作为本单元最后一课,在前两课“明确学习的意义” 、“体验学习的快乐”的基础上,重点培养学生“掌握学习的方法”,与本单元的前两课是递进关系,符合学生的认知与学习规律。本课针对培养学生养成良好学习习惯,掌握合适的学习方法 而设置 ,共设计了四个话题,“人人都能学得好”“多在心中画 问号”“我和时间交朋友”“好经验共分享” ,四个话题各有侧重,话题之间没有逻辑上的紧密联系,可根据需要进行灵活地调整与重组,现将第一、第二、第四个话题在第一课时完成,重点帮助学生树立学习信心,掌握有效学习方法,第三个话题在第二课时完成,帮助学生了解合理安排时间的好处以及方法,养成良好学习习惯。

1.根据下面的图文资料,说明前苏联垦荒区土壤风蚀的潜在自然背景。并说明人们的生产活动怎样加剧了这个过程。点拨:对图2.16的分析,要知道”垦荒地区”处于亚欧大 陆的中部偏北的地方,虽处于西风带但远离水汽来源,故降水稀少。从其周边的内陆湖“里海”、“咸海”的分布特点,可以推断,这是一个半荒漠向干草原的过渡地带,是一个生态环境比较脆弱的地区,其自然地理状况必定是寒冷、干旱、大风。2.20世纪60年代中期以来,前苏联在总结大规模垦荒经验教训的基础上,采取了一系列综合防护措施。仔细分析这些措施,你认为该地区防治荒漠化(土壤风蚀)的主要方向是什么?点拨:要善于将所列四项保护措施逐条进行分析,而后进行归纳,不难找出它们之间的共同的东西,那就是“抗旱、防风、保水、保土、保肥”。3.根据所学知识,你认为前苏联垦荒区防治荒漠化的对策与措施可以被我国的哪些地区所借鉴。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。