(1)填写表格中次品的概率.(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?六、课堂小结:尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。七、作业:课后练习补充:一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球与10的比值,再把球放回袋中摇匀。不断重复上述过程5次,得到的白求数与10的比值分别为:0.4,0.1,0.2,0.1,0.2。根据上述数据,小亮可估计口袋中大约有 48 个黑球。
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
我的原则是:尽我所能尽力做好每一件事。漫漫人生路,我想如果我能勇于尝试新的东西,不断挑战极限,并尽我所能努力做好。这样的话,即使到了人生终点,我也能坦然告诉别人:我能,我行,我可以。在工作这半年来,我所做出的努力是有目共睹的。在新学期开始的时候,我将个人的能力阐扬到极致,积极倡导周围的朋友加入义工这个大群体,并亲言传身教的讲授义工的种种益处,提高自身修养,提高公民素质,为建设文明的城市做贡献。同时,也亲身体验的听了一场“祝队长”的讲座,是我能加具体的了解到到底义工是怎么样的一个职位,到底是奉行一个什么样的宗旨,履行的是什么样的义务。通过讲座,是我更加明确了自身的定位,人生的目标更加明显。天下义工是一家,在3月初举办了高校义工的联谊活动,作为义工,我们应时时刻刻履行自身的义务,我们去了金石滩,“拾垃圾”“拔河比赛”,收获的不仅仅是志同道合的朋友,更是我们丰富人生为社会奉献爱心的积极活动。义工无处不在,生活中,处处的小事更是体现一个义工的积极义务,倡导身边的同学经常去教室打扫卫生,捡捡垃圾。我有责任心,具备一定的社会实践能力,我为人诚实守信,能与人团结共事,而且具有良好的协调能力,我思想活跃,善于和别人交流,协调人际关系,良好的品质是干好一切工作的基础,所以我相信自己有能力做好自己本职工作。我深深被义工精神感染着,我热切渴望加入到更多义工活动中,在今后的日子里,我会用真情和热情帮助更多弱势群体,用制度和岗位的职责为社会服务,我努力争取更多的机会,为社会献出一份微薄但很坚实的力量。
教学流程: 一、组织教学师生问好二、导入:1.教师吹奏乐曲《友谊地久天长》。听教师范奏。2.介绍竖笛的历史,了解认识竖笛。3.认识八孔竖笛:吹口,笛头,窗孔,笛身,笛尾,观看演奏姿势。4.了解八孔竖笛八孔的音名及手势,手形,吹奏的姿势。5.练习手指动作,大家来做手指操,sol、la、si,三个音,提出闭指,开指手指尖的要求。6.吐奏练习,介绍吹奏的要求,吐音练习,气息的控制。7.练习:7 7 7 7 | 7———||请你跟我这样吹,吐奏不同长短时值同音的练习。8.找个别学生试吹,寻找优点,缺点,并改正。听学生范奏,纠正。9.6 6 6 6 | 6 ——— ||的练习。10.sol音练习:5 5 5 5 | 5 ——— ||。11.任意说sol,la,si,三个音要求学生很快的将以上的相关练习吹奏出来。12.换音练习,si——la的换指练习,要求将两条连起来吹奏。13.三音吹奏,si——la——sol的换指练习,要求将三条连起来吹奏。14.将si ——la ——sol改成sol——la——si吹奏。15.换指练习,换指得练习与要求。16.随意说音,让学生吹奏。17.练习小曲《友谊地久天长》。18.在老师的指导下练习《再见》。18、下课,师生再见!
活动目标:1、尝试从前向后安排画面,初步表现简单的重叠。2、乐于参与造长城活动,为自己建造长城而感到自豪。 活动准备:1、黑色水笔、油画棒。2、课件。 活动过程:一、欣赏讨论:1、我们的首都在哪里?北京有哪些好玩的地方?2、这是什么地方?长城建造在哪里?它象什么?3、中国古代劳动人民为什么要建造长城?现在的长城有什么用处?
教学内容一、学习歌曲《孟姜女哭长城》1、故事导入。教师提问题:同学们,你们知道世界历史七个伟大奇迹都有那些吗?中国有什么景点是属于七大奇迹的?导出“长城”话题,继而提问关于长城的传说故事《孟姜女哭长城》的故事。2、听听唱唱。播放歌曲《孟姜女哭长城》,让学生欣赏一遍歌曲,学生在倾听音乐的过程中,老师可提示学生注意旋律音阶的特点,请学生随着伴奏音乐唱唱歌曲的旋律,体验旋律的美感,感受五声音阶的特点。3、唱唱说说。播放歌曲《孟姜女哭长城》,请学生跟随音乐一起唱,教师指导学生用有弹性的声音和高位置的歌唱状态进行演唱,唱完请学生说说秦始皇修建长城对劳动人民生活带来什么的影响?为什么说长城是中华民族智慧和力量的结晶?通过问题讨论形式激发学生的爱国热情。4、分析乐曲。请学生分析《孟姜女哭长城》一共有几个乐句,做课本P8页的练习,教师引导学生用图形、涂颜色等方法来表示歌曲的结构。5、故事表演。请学生伴随着音乐,分角色扮演《孟姜女哭长城的故事》,让学生深切体会当时劳动人民的悲苦生活。二、课后延伸布置学生查阅有关长城的资料及传说故事。1、介绍长城建筑的各个朝代。2、说一说长城都跨过了哪些省市。3、了解“孟姜女哭长城”的故事。5、介绍长城景点“山海关”、“嘉峪关”“八达岭”。6、谈谈你对长城的感受。
朔风凛冽,气温低至零下二十多摄氏度。出发前,同志们都穿上了配发的空军地勤服——皮上衣、皮裤子。郭永怀个头偏高,没有合适的尺寸。大家劝他留在家里,等候答复,可他无论如何不答应。人们拗不过他,只好找来一件皮大衣和一双毛皮靴凑合穿。实验场区没有帐篷,也没有座椅。站乏了,冻透了,只能咬牙坚持。终于挨到开饭时间,郭永怀和大伙一样,用开水把冻得硬邦邦的馒头泡软,就着咸菜,凑合一顿。 在研发过程中,对于引爆方式的选择,科研人员一度在较易实施的“枪式法”和起点较高的“内爆法”之间难以取舍。郭永怀采用“特征线法”进行理论计算,提出以先进的“内爆法”作为主攻方向,同时,为了稳妥起见,应当“争取高的,准备低的”。随后进行的爆轰物理实验无疑是掌握关键技术的重要一环,为了取得满意的爆炸模型,郭永怀带领科研人员反复试验,有时,甚至跑到帐篷里亲自搅拌炸药……
今天在国旗下,我们大家一起重温一个不少同学早已熟悉的故事,题目是《一箭断,十箭难折》。这个故事讲的是:很久很久以前,有个国王,他有十个儿子,这十个儿子平时因争权夺利,相互间勾心斗角,扰得整个皇宫不得安宁。一天,老国王得了重病,他自己也知道快要不行了。于是就把十个儿子都叫到身旁,拿出十支箭来,让十个儿子每人折一支,十个儿子轻轻一折,就将箭折断了。然后老国王又拿出十支箭,并把这十支箭紧紧地捆扎在一起,让十个儿子折,可十个儿子用尽力气,谁也折不断。这时十个儿子都明白了老国王这样做的目的。同学们听到这里,你们也明白了吗?这个故事告诉了我们什么道理呢?告诉我们集体力量大。其实,在生活中我们已经有过许多这方面的体验:许多许多的石头堆积起来可以变成一座巨大的高山;许多许多的砖头垒筑起来,可以砌成万里长城。
二、今后工作打算一是探索农村产权规范流转和交易。依托农村集体经济组织建立符合农村实际需要的产权流转交易市场,开展成员股权、农村承包土地经营权、集体林权、“四荒”地使用权、农业类知识产权、农村集体经营性资产出租、抵押等流转交易。根据农村产权要素性质、流转范围和交易需要,制定产权流转交易管理办法,健全市场交易规则,完善运行机制,实行公开交易,加强农村产权流转交易服务和监督管理。二是吸收更多的农民股权。探索支持引导村民依法自愿将自己的房屋入股到村股份经济合作社统一运营,群众享受分红。目前,群众的房屋出租,主要是个人与个人之间的协议关系,会对承租人的服务及管理造成缺位。入股到村股份经济合作社,可实现统一运营,年底按股权领取分红,创造更大的效益,提供更好的服务。同时,也便于村上管理,增强其抵御自然风险的能力。
3)乘除运算①有理数的乘法法则:(老师给出,学生一起朗读)1. 两数相乘,同号得正,异号得负,并把绝对值相乘;2. 任何数与零相乘都得零;3. 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4. 几个有理数相乘,若其中有一个为零,积就为零。②有理数的除法法则:(老师提问,学生回答)1. 两个有理数相除,同号得正,异号得负,并把绝对值相除;2. 除以一个数等于乘以这个数的倒数。③关系(老师给出)除法转化为乘法进行运算。
一、课前准备师:同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?学生:我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围,适合什么人穿,但肯定与身高、胖瘦有关.师:这位同学很善动脑,也爱观察.S代表最小号,身高在150~155cm的人适合穿S号.M号适合身高在155~160cm的人着装……厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.你觉得这种生产方法有什么优点?学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位cm).如下
本节的内容主要是反比例函数的概念教学.反比例函数概念的建立,不能从形式上进行简单的抽象与概括,而是对这些实例从不同角度抽象出本质属性后,再进行概括。教材设计的基本思路是从现实生活中大量的反比例关系中抽象出反比例函数概念,让学生进一步感受函数是反映现实世界中变量关系的一种有效数学模型,逐步从对具体反比例函数的感性认识上升到对抽象的反比例函数概念的理性认识. 同时本节的学习内容,直接关系到本章后续内容的学习,也是继续学习其它各类函数的基础,其中蕴涵的类比、归纳、对应和函数的数学思想方法,对学生今后研究问题、解决问题以及终身的发展都是非常有益的.基于以上分析,本节教学设计是建立在一个个数学活动的基础上,经过对情境理解、本质抽象的积累而形成的.让学生对一类问题情境中两个变量间的关系,在充分经历写表达式,计算函数值和观察函数值随自变量变化规律的过程中,逐步概括形成反比例函数的概念.针对教学实际,我选取了贴学生现实的,有价值的实例“文具店里买学习用品”和“剪面积为定值的长方形纸片”等作为问题情境.
活动准备: 1、多媒体课件、录音机、磁带。 2、提前布置好春、夏、秋、冬的场景。 3、绘画工具、布偶。 活动过程:一、教师以“故事多多姐姐”的身份出场,自我介绍。 1、“我”教师走进教室. 2、“我”教师:小朋友们好!还认识我吗?(幼答)我是来自动画城的多多姐姐,自从我们栏目举办了“幸运星旅行记”以来,收到了很多小朋友的来信与参与。今天很高兴来到这里,并恭喜你们成为本周的幸运星,一起加入我们的幸运星旅行吧!(给幼儿佩带幸运星饰品)我们的口号是“故事多多,乐趣多多”,那么今天我们旅行的第一站就是动 画城,跟我出发吧!(随音乐一起入场)
2、通过教师的示范和讲解,了解纸版画的制作方法和制作程序。 3、喜欢纸版画创作活动,并能认真地完成整个操作过程。 活动准备: 1、幼儿用书人手一册,实物投影仪一台。 2、每张桌子上有:厚纸板、剪刀等材料若干,白纸幼儿人手一张。 3、在活动室的前面还有两张桌子,桌子上有底纹笔若干,黑色颜料盘二到四盘,白纸或蓝色纸的数量与幼儿人数相等。 活动过程: 1、观察纸版画《大轮船》,感知轮船的结构以及纸版画的特点。 ◎用实物投影仪放大幼儿用书,引导幼儿看图说说:图上有什么? ◎教师:轮船是什么样子的?这个轮船与我们以前见过的轮船有什么不一样? ◎引导幼儿从画面的色彩、线条、轮廓等方面进行观察和比较,感知纸版画与其他绘画的不同,告诉幼儿这种绘画的手法叫做:纸版画。
活动准备: 1、幼儿在家看到过爸爸妈妈包馄饨。 2、馄饨皮、馅、筷子、碗等 活动过程: 1、了解包大馄饨的材料 *教师出示材料:今天我们要来包大馄饨,瞧,包大馄饨需要哪些材料呢? *引导幼儿进一步认识材料 馄饨皮是用什么做的?馅里面有哪些菜,是怎样做出来的?