幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
总之,在这届全国青教赛中,绝大多数参赛选手都很好,都很专业,都很努力,但是也存在一些问题,也出现了一些违规行为。(略)对于存在这些问题的选手,评委会经过集体讨论,按照有关规则给予了相应的处罚。按照总结大会的发言习惯,我也要表示感谢。第一,我要代表全体评委,感谢这届大赛的主办方组委会对我们的信任,让我们担任了竞赛的评委。第二,我要代表全体评委,感谢这届大赛的承办方清华大学,为我们提供了细致、周到、高效的服务和技术支持,特别是那些志愿者,不厌其烦地指导我们使用电子评分系统。对于像我这样的老教师来说,这还是挺有难度的。第三,我要代表全体评委,感谢参赛的选手。我们不仅从你们的讲课中学到了新的知识和方法,也在你们身上看到了我们的过去,还看到中国高等教育的未来。虽然这不是未来的全景,但是令人欣慰令人鼓舞的画面。第四,作为评委会主任,我还要感谢所有评委。这几天,各位评委确实非常辛苦,有的老师还带病坚持工作。你们的敬业精神令我感动!
(一)本单元教材分析和学情负数是小学阶段数学教学新增加的内容。很久以来,负数的教学一般安排在中学教学的起始阶段进行,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的基础,《标准》将其提前到小学阶段教学。认识负数,对于小学生来说是数概念的一次拓展。学生以往所认识的数——整数、分数、小数等都是算术范围之内的数,建立负数的概念则使学生认数的范围从算术的数拓展到有理数,从而丰富了小学生对数概念的认识。(二)本单元的教学目标根据以上教材分析和学情,我确定本单元的教学目标如下:1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
一、开始部分:数数游戏 1.手指指棋盘点数1-5.(注意点数常规) 2.接数练习.(1-50) 二、基本部分:按群计数1-50 1.讲述故事吸引幼儿. 师:今天是对对国五十年的国庆大典,全国上下都很高兴.国王邀请50位客人参加国庆大典,对对国有个规定,进出人员必须两个两个的,要不就要受到惩罚,所以守成门卫兵都很小心,今天更不能出错,出错会掉脑袋的,我们一起来帮他们数.
活动过程:一.师:今天我们要到“数的王国”去玩,国王要先看看你们认不认识它的孩子们。(出示 1 — 8 数字卡片)你们用动作学学它们的样子吧。(指数字 8 )这个数字你们认识吗? 8 像什么?我们一起用手指在空中写个 8 。二.介绍游戏内容及规则教师边介绍游戏内容边出示游戏标识。 ·按数夹物根据数字或点子卡片夹相应的物体放入碗中。 ·数物朋友天上或划掉物体,使物体的数目和数字一样多。·拼数字8 ·数物拼板根据物体的个数找相应的数字拼起来。·听音摸物 一个幼儿拍手,另一个幼儿按拍手的次数摸出相应的物体。·分类计数 这个游戏是以前没有玩过的,要你数数三角形有几个,正方形有几个……把数字分别填在下面的表格中。
2.重点难点: 重点:感知10以内的数,初步认识数字10。 难点:学习数字和图片、圆点进行匹配。 二、过程实录: (一)活动目标: 1.感知10以内的数,初步认识数字10。 2、理解10表示的实际意义,学习数字和图片\圆点进行匹配。 3.大胆参与数学操作及交流活动。 (二)活动准备: 1、每张座位上贴上1-9的数字,每人一张胸卡(有数量不等的小动物) 2、数量为78910的动物卡片若干,大色子一个 (三)活动过程: 1、复习9以内的数量 1)导入:春天来了,我们一起去郊游吧!(幼儿随郊游音乐进场) 2)游戏:找座位,根据胸卡上图片的数量找相应的座位号。 师:我们每人都挂了一个卡片,看,我的卡片上有什么?有几只?那要去找数字几呢?(9只刺猬找9号座位,这就是对号入座)请你看看你的卡片上有几只动物应该找几号座位?
2、会用接数的方法,正确目测7以内(4、5、6、7)的数群。准备: 1、空间场地放有树叶若干。 2、标有4、5、6、7数字点子卡片 3、标有4、5、6、7数字的篮子4只过程: 一、练习按点卡拾落叶。 1、教师:“秋天到了,小树叶离开了大树妈妈,落了一地。我们来玩一个拾落叶的游戏。(出示标有4、 5、6、7数字点子卡片)清幼儿看清卡片上有几个点子,就拾几片叶子,再用绳子捆成一捆。”
2.指导幼儿依据不同标准对物体进行分类。活动准备1.一套动物图卡,其中有一张是汽车图卡。2.苹果、梨、橘子、香蕉四种水果若干。3.不同颜色、大小、形状的积木若干。 活动过程1.参考提问:请幼儿观察图卡并说出图卡上都有些什么?请幼儿将自认为不对(它和这些图卡不一样或不是一类)的图卡拿出来,并说出为什么。
2、在操作及游戏活动中,感受对应的关系。 3、乐于参与集体游戏活动。 活动准备: 1、教具准备:“小熊一家”“大象运木头”“方方的搭” 2、学具准备:“大象运木头”;“方方的塔”。 3、《操作册》第1册第10页。 活动过程: 1、出示“小熊一家”导入。 今天小熊一家人又要来我们小二班了,我们来看一看。(熊爸爸、熊妈妈、熊哥哥、熊姐姐、熊宝宝)
2.三角形的分类。师:你能给三角形按照不同的标准进行分类吗?生用自己喜欢的方式整理分类,然后汇报:生:三角形按角分为锐角三角形、直角三角形、钝角三角形。师:什么是锐角三角形、直角三角形、钝角三角形?生:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。生:三角形按边分为不等边三角形(三条边都不相等)、等腰三角形(等边三角形) 等腰三角形的两条边相等,等边三角形的三条边都相等。3.四边形分类。师:你能给四边形分类吗?生:四边形分为平行四边形和梯形;平行四边形包括长方形和正方形,长方形又包括正方形;梯形包括等腰梯形和直角梯形。4.直线、射线和线段的关系。小组内互相交流,然后汇报:
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
活动一:课本第三页的活动题,把学生分成几组然后让他们读图讨论,思考书上的几个问题,最后派个代表回答问题.最后教师做适当的补充:人口的自然增长不仅与人口自然增长率有关,而且还与人口基数有关.活动二:课本第七页的活动,先让两位学生阅读第六页的案例结合活动题思考问题,让几个组学生讨论所给的几个问题.让学生归纳最后教师做适当的补充.时间安排:由于本节内容不难因此整个教学过程是一节课的时间来完成的因此在教学过程中注意时间的把握,在做活动和讨论时注意把握时间,自己尽量少说废话.课堂小结通过这一节的学习,同学们正确理解和认识人口增长,增长模式和人口增长模式的转变。我们可以利用比较法、分析法来掌握,并联系现实生活,进行分析、判断,化理论知识于实践之中。
一、教材分析? 本节课是三年级第六单元第一节的教学内容,主要讲了明白什么是分数,初步理解分数的意义,能正确地认、读、写简单的的分数等知识。这部分内容是在学生们掌握了一些整数知识的基础上来学习的,它为进一步学习比较分数的大小和分数的加减运算有重要的铺垫作用。? 三年级的学生活泼好动、思维敏捷、善于学习,爱好展示,善于发言,课堂根据学生的年龄特点设计教学活动。 二、教学目标(针对新课标的要求与教材内容,我制定了如下的教学目标)????? 1、让学生理解分数的意义,能正确地认、读、写简单的分数。????? 2、能熟练地根据图表表示分数,根据分数涂写表格。? 3、培养学生的思维能力和运用数学知识解决实际问题的能力,从而培养学生学习数学的兴趣。????? 三、教学重点难点 对教学目标和教材内容,我确定了教学重点和难点)???正确地认、读、写简单的分数以及初步认识分数的含义是重点。???合作探究理解分数的意义是难点。
2、进一步感知数的互补关系。 3、在活动中,独立思考,认真书写。 活动准备: 1、经验准备:幼儿学习过6以内数的组成。 2、物质准备: 教具:记录纸和笔。 学具:(1)《幼儿用书》人手一册,笔人手一支。(2)组成连线:做成各种小动物形状的底纹,顶部写有6以内的总数,其他地方分为两排,可以使组成总数的数字或点子。 活动过程: 1、快乐碰一碰。 ◎“碰球”游戏。教师和幼儿共同玩“碰球”游戏,复习6以内各数的组成。 ◎找朋友碰一碰。请每个幼儿自己做一张5以内的数卡,贴在胸前,听音乐《找朋友》唱歌:找找找,找朋友,找到一个号朋友,握握手,碰一碰,我们合起来就是6。边唱边拍手找朋友,找到朋友后与他握握手,碰一碰身体。唱完以后还要再说一说:×和×合起来是6。
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。