本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
老师们、同学们:大家早上好!今天,我国旗下讲话的题目是——团结互助,友爱同学。历史经验无数次证明,无论是一个民族、一个国家,还是一个社会、一个团体、一个家庭,只有重视团结,珍惜团结,维护团结,搞好团结,才能有强大的力量,才能和睦相处,和谐发展。团结友爱是中华民族的一种美德,备受推崇。雷锋对同志有着春天般的温暖,图娅对伙伴有着金子般的心,这都是对团结友爱的准确诠释。我们也应该以真诚的心,用满腔的爱去对待每一个人,让自己的身边洋溢着其乐融融的真情。学校是一方充满了浓郁文化气息的净土,校园也应该是团结友爱、互帮互助的和谐校园。在这里,我们不仅要学习文化知识,还要学习如何与同学、老师相处,与校园环境相处,学会团结互助,学会做具有高尚情操的人。
三、工作报酬、保险与福利待遇第五条甲方根据乙方的工作岗位,按月支付乙方的工资。乙方试用期工资为___元/月,正式聘用期工资由基本工资和绩效工资组成,基本工资为___元/月。绩效工资按甲方依法确定的分配制度、方式和标准执行。如甲方的工资制度发生变化或乙方的工作岗位变动,按新的工资标准确定,并根据乙方的工作岗位,确定每月工资报酬。第六条乙方在甲方处工作满一个学期后可以享受寒暑假的带薪假期。寒暑假只发基本工资___元/月。合同期限届满后甲乙双方不续签合同的,甲方不支付该寒暑假工资。
每一个生命都弥足珍贵,当死亡近在咫尺之时,人类最初的本性便显露无疑,乘客们哭喊、咒骂,歇斯底里的情绪充斥着整个机舱,甚至有人解开安全带,吵闹着要下去……但更多的人是在倾诉对亲人的爱意,那个一个人去拉萨溜达的小姑娘后来勇敢的为人们鼓劲,那个不敢表白聋哑女孩的小伙子在飞机冲进云团最后一瞬喊出真心,那个欺骗老婆自己是大厨师的大汉跟妻子道歉,那个自己都呼吸困难的乘务员紧紧的拥抱小孩,温柔的告诉他:别怕!
(1)第一环节:讲解活动主题,提出问题讨论 1.让学生们说一说自己有哪些习惯。 2.老师根据学生发言,对习惯进行简单的分类,如分为生活习惯和学习习惯,好的习惯和坏的习惯等等,并在黑板上进行板书,大纲式列出来。 3.老师进行归纳小结:习惯是一种态度,同学们说的习惯中,有生活习惯、有学习习惯,有些是好的习惯,有的是坏的习惯。其实从我们出生的那一天,我们就开始有意无意地养成习惯......比如今天,当我们走进课堂,其实就已经开始了“好好学习”这个习惯养成的第一步....
(1)第一环节:讲解活动主题,提出问题讨论 1.让学生们说一说自己有哪些习惯。 2.老师根据学生发言,对习惯进行简单的分类,如分为生活习惯和学习习惯,好的习惯和坏的习惯等等,并在黑板上进行板书,大纲式列出来。 3.老师进行归纳小结:习惯是一种态度,同学们说的习惯中,有生活习惯、有学习习惯,有些是好的习惯,有的是坏的习惯。其实从我们出生的那一天,我们就开始有意无意地养成习惯......比如今天,当我们走进课堂,其实就已经开始了“好好学习”这个习惯养成的第一步....
学生们开始时会一时无法适应正规的双语学习,我们就让他们更自由一些:可以用轻松愉快的教学方式赢得学生们的喜爱,改变传统的教学模式,让课堂更加有趣味性,适合学生们的特点。对于刚接触汉语的学生来说,需要老师提出一定的要求,应该知道作为学生所要达到的标准,每一堂课,我都会使用新学的教学理念运用于课堂,给每一位学生讲清楚该怎样做才是最好的;只要每一天学生都在努力、在进步,我们就应该很欣慰!对于一直生活在母语环境下的学生来说,一下子去适应双语环境,在我们看来的确很困难。然而,要知道学生们的语言接受能力极强,他们很快会接受双语环境。
活动目标: 1、培养幼儿大胆创作的能力。 2 、锻炼幼儿小肌肉的活动能力。 活动准备: 海绵印章(有苹果、小鱼、乌龟等形状)、水彩笔、水粉、棉签、皱纹纸条、彩色粘贴纸(三角形、圆形、正方形)、胶水等各种操作材料;教师设计的服装作品;旧衣服《节奏明快的音乐》。 活动流程: 引起兴趣--观察讨论--设计创作--作品展示--活动延伸。 活动过程: 一、引起孩子兴趣 1、教师随音乐进行服装表演,幼儿欣赏。 首先,教师展示衣服的正面图案:蓝色的河水、红色的小鱼、黄色的小乌龟。然后请幼儿欣赏衣服背面图案:一只小乌龟背着三角形、圆形、正方形的果子。衣服的下面是用彩条装饰成的小草裙。 2、提问:老师的衣服和服装店里的一样吗? 幼儿:不一样。 教师:这是老师自己设计的衣服!
针对我校实情我们克服了场地小、器材少、上课班级人数多的众多不利因素,体育组制订了体育教师场地器材安排表,体育教师出操安全值勤表,从思想上组织上确保安全措施责任到人。教学过程中杜绝安全事故的发生。六、多方努力,齐抓共管,做好《学生体质健康标准》的测试、登记、上报工作《学生体质健康标准》是促进学生体质健康发展、激励学生积极进行身体锻炼的教育手段,是学生体质健康的个体评价标准,是《国家体育锻炼标准》在学校的具体实施,也是学生毕业的基本条件之一。为顺利完成学年度体育《标准》测试工作,提高我校体育《标准》成绩,学校在初期就制定了学校《体质健康标准》测试计划,要求各班级认真开展《标准》的训练和测试工作。在副校长xx的领导下,由体育组组长牵头,多方努力,齐抓共管,共同组织实施,高要求、高质量地完成了《学生体质健康标准》的测试、登记、数据录入及上报工作。
同时,要结合整改做好“预防文章”,突出抓早抓小,完善各项规章制度,把纪律挺在前面,强化制度的刚性约束,切实把专题学习贯彻新时代中国特色社会主义思想ZT教育的成果转化为指导工作实践的有力武器。三是严守纪律规矩,保持勤政廉洁。身边的反面典型就是最好的警示,大家要深刻汲取XX严重违纪违法案件教训,深刻认识到失责必问、问责必严已经成为常态。要坚决扛起全面从严治D的政治责任,严格落实“一岗双责”,营造风清气正的政治生态。要牢固树立法纪意识,严守政治纪律和政治规矩。要树立正确的权力观、政绩观、事业观,严把小事、守好小节,管好家人、树好家风,远离“圈子”、防止“围猎”,始终做到崇廉拒腐,干净做事。最后,希望XX班子团结带领XXD员干部群众坚持发展为先、实干为要,紧盯目标任务,奋力比学赶超,积极争先进位,有序推进年度各项工作,交出一份优异的答卷。
比如刚才我们讨论的很多海关法的一些争议和问题,例如研究走私罪的罪和非罪、此罪和彼罪、关于犯罪形态的问题。刑法学是有范畴的,就是犯罪的构成要件和犯罪构成要件的特殊形态。用这个去研究它,它就会得出一个相对确定的结论。民法学也是一样。但是在海关法里我们看不到有一个关于海关法的构成要件的学说。我们在海关法的讨论当中,大家都会从自我的实践中主观地提出一些建议。但是由于我们没有这种范畴和知识体系,没有用这种要件的方法或者原理的方法来指导我们,所以我们得出来的结论都是不确定的,这样得出的东西就会导致“公说公有理婆说婆有理”,他就不是一个科学的方法。这个层面是我们很欠缺的。我一直有一个愿望,要写一个没有一个海关法条文的海关法著作。如果能够写出这种著作,那就真的代表我们变得科学了,否则我们现在的海关法研究就没有突破科学这张纸,它就依然是很幼稚的。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。