三是完善场景应用。重点关注县域内退役老兵晚年生活质量,依托XX县光荣院建成,全力争取人、财、物支持,升级老兵“夕阳红”关爱服务品质,为符合条件的退役军人对象提供集中供养、健康管理等服务,让老兵们轻松走好人生最后一段旅程。持续深化老兵“身后事”关怀应用场景,探索老兵“身后关怀”延伸,重点推进“军人公墓”项目,计划在蒙垟山公墓建设1000对墓穴作为军人公墓,为军人军属、退役军人等提供免费、减免等优惠措施,解决军人及家属的“身后事”困扰,实现“伤心事”安心办。(六)围绕涉军群体权益维护,全力保障社会和谐平安稳定。一是持续保持维稳紧弦。围绕重要时间节点、敏感节点,全力保障涉军群体稳定,高标准开展维稳安保工作,确保“三个不发生”;在日常接访方面,要积极做好矛盾纠纷条件,做到未访先知、接访有备,全力推进矛盾问题源头预防治理。二是持续开展动态排摸。
一、说教材吨的认识这部分内容是在学生认识了质量单位“克”和“千克”的基础上进行教学的。且学生已经能够准确地进行千克和克单位之间的换算。这些都为这节课的教学内容作了知识的铺垫和思路孕伏。而通过本课的教学,使学生对质量单位有比较全面的认识和理解。对于吨这个质量单位,学生在日常生活中虽然略有所闻,但接触并不多。教材所展现的知识结构,层次清楚、循序渐进,便于学生理解和掌握。教材先通过观察大宗物体,对吨有初步的感觉。接着介绍吨的概念,提示了吨与千克之间的进率1吨=1000千克。接着教材结合学生的生活实际,通过对面粉、油、小学生体重等物体的介绍帮助认识吨,让学生加深1吨=1000千克的认识。最后通过练习让学生了解并掌握吨与千克之间的简单换算及质量单位的合理运用。
一、贯彻两个文件,实施一项制度: 新学年重点贯彻落实安徽省教育厅教基[20xx]8号文件《关于全面推进农远工程应用与管理工作的意见》、安徽省歙县教育局教电〔20xx〕13号文件《关于印发〈歙县贯彻“关于全面推进农远工程应用与管理工作的意见”实施意见〉的通知》精神,突出“农远”设备的管理、增配、使用,确保设备的正常运行,发挥设备的教学效益。努力实施《安徽省中小学校现代教育装备制度》,根据《安徽省中小学校现代教育装备制度》要求,结合我校实际,修改、补充、完善原订的相关制度,重点是管理、应用、培训、考核等制度。使远程教育体现出规范化、制度化、效益化。
20xx.07-20xx.08 XXX软件有限公司 开发工程师工作描述: 开发android版蓝牙打印软件,控制蓝牙打印机(如斯普瑞特便携式打印机、tsc便携式打印机)按客户需求打印对应格式标签;在工作中主要负责协助项目组长以及该项目组的其他开发人员对产品新需求进行分析,对代码进行封装重构,提升性能;在工作中表现出来认真负责、不怕苦和累的品质,积极配合组长的工作安排,积极的与其他相关工作人员的沟通和交流,在开发新版本、维护旧版本的工作中,表现积极,赢得大家的认可和表扬。
根据《中华人民共和国劳动合同法实施条例》第十八条、第十九条规定,劳动合同有固定期限劳动合同、无固定期限劳动合同和单项劳动合同。一、固定期限劳动合同,是指用人单位与劳动者约定合同终止时间的劳动合同。
2、在操作及游戏活动中,感受对应的关系。 3、乐于参与集体游戏活动。 活动准备: 1、教具准备:“小熊一家”“大象运木头”“方方的搭” 2、学具准备:“大象运木头”;“方方的塔”。 3、《操作册》第1册第10页。 活动过程: 1、出示“小熊一家”导入。 今天小熊一家人又要来我们小二班了,我们来看一看。(熊爸爸、熊妈妈、熊哥哥、熊姐姐、熊宝宝)
一是防止返贫的任务特别重。重点帮扶县数量不到全国县级单位的6%,但防止返贫的任务却占了相当大的比重。累计脱贫人口占全国总数的近五分之一,脱贫人口收入虽然实现了快速增长,但到2020年也只有全国脱贫人口平均水平的xx%。据动态监测,全国易返贫致贫人口约xxx万,重点帮扶县占了近xx%;全国易地搬迁脱贫人口xxx万,重点帮扶县占了近三分之一;全国有xx个万人以上集中安置点,其中xx个在重点帮扶县。
一是防止返贫的任务特别重。重点帮扶县数量不到全国县级单位的6%,但防止返贫的任务却占了相当大的比重。累计脱贫人口占全国总数的近五分之一,脱贫人口收入虽然实现了快速增长,但到2020年也只有全国脱贫人口平均水平的xx%。据动态监测,全国易返贫致贫人口约xxx万,重点帮扶县占了近xx%;全国易地搬迁脱贫人口xxx万,重点帮扶县占了近三分之一;全国有xx个万人以上集中安置点,其中xx个在重点帮扶县。
(2)如何开展岸上急救 第一步:当溺水者被救上岸后,应立即将其口腔打开,清除口腔中的分泌物及其他异物。如果溺水者牙关紧闭,要从其后面用两手的拇指由后向前顶住他的下颌关节,并用力向前推进。同时,两手的食指与中指向下扳颌骨,即可搬开他的牙关。 第二步:控水。救护者一腿跪地,另一腿屈膝,将溺水者的腹部放到屈膝的大腿上,一手扶住他的头部,使他的嘴向下,另一手压他的背部,这样即可将其腹内水排出。 第三步:如果溺水者昏迷,呼吸微弱或停止,要立即进行人工呼吸,通常采用口对口吹气的方法效果较好。若心跳停止还应立即配合胸部按压,进行心脏复苏。心肺复苏的目的在于尽快挽救脑细胞,避免因缺氧引起细胞坏死。因此施救越快越好,同时注意要在急救的同时,要迅速打急救电话,或拦车送医院。
本节活动共有三个目标,通过活动让幼儿知道邮局、银行、超市等与人们生活的关系,懂得这些地方能为我们提供怎样的服务。活动时我在活动室布置了超市、饭店、菜市场以及银行的区域让孩子们在自己已有的经验之上相互交流,了解更多的社会常识。目标二是通过了解不同场所的工作人员,让幼儿了解不同的职业以及这些职业能为我们带来的服务。目标三是让幼儿从体验中获得,让幼儿在活动中等到学习也得到快乐。
尊敬的老师、亲爱的同学们:大家上午好!记得有一个故事。几个学者与一个老者同船共渡。学者们问老者是否懂得什么是哲学,老者连连摇头。学者们纷纷叹息:那你已经失去了一半的生命。这时一个巨浪打来,小船被掀翻了,老者问:“你们会不会游泳啊?”学者们异口同声地说:不会。老者叹口气说:“那你们就失去了全部的生命。”虽然这只是一个故事,但其中蕴含的哲理却耐人寻味。灾难的发生对每个人来说,不分贫富贵贱,性别年龄,无论学富五车,幼小纤弱,还是身强力壮,如果缺少应有的警惕,不懂起码的安全常识,那么,危险一旦降临,本可能逃离的厄运,却都会在意料之外、客观之中发生了。今天是3月26日,是第23个“全国中小学安全教育日”。今年的主题是“做自己的首席安全官-平安校园行”,我国中小学生安全防范知识匮乏,每年约有1.6万名中小学生死于食物中毒、溺水、交通事故等。
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.