提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

中班数学:铺小路课件教案

  • 大班科学教案:弹力运动会

    大班科学教案:弹力运动会

    二、活动目标:通过观察与实验,使幼儿进一步感知不同物体的弹性现象,培养幼儿观察的敏锐性。三、适用对象:5~6岁幼儿。四、活动所需资源皮球、橡筋、气球、弹簧、木块、铁片、弹性球、动物标靶、自制弹弓(每人一个)、纸制子弹等。五、活动过程:拍一拍,捏一捏,感知不同物体的弹性。幼儿自主选择一个皮球跟着音乐拍球,其中有些皮球是没有气的。诱导幼儿按一按、捏一捏有气和没有气的皮球,共同找出原因,知道皮球打了气会弹得高,原来空气也有弹性。找一找生活中有弹性的物品。(1)在一大堆物品中找出有弹性的物品(如拉一拉弹簧、橡筋、捏一捏气球、海绵等)。(2)在日常生活中还有哪些物品是有弹性的。如弹簧床、海棉枕头、沙发、床垫、吹气救生圈等。玩一玩。(1)橡筋的一端系在中指上,另一端系一只小球,并用同一只手拿着球向下投,用手掌收回小球。(2)橡筋一端系着中指,然后一只手拿着球向前投,随后收回,重复投掷,可投向目标处。(3)固定橡筋一端,另一端手拉着小球,拉到一定的距离时放手,让球反弹回去,超过固定物的高度。(4)将长橡筋的一端固定在乒乓球拍柄上,然后用球拍向上拍打小球,让小球弹上去又拉回来,反复拍打。做游戏。

  • 大班科学教案:好忙的蜘蛛

    大班科学教案:好忙的蜘蛛

    二、 教学准备: 黑板、图片 三、 教学过程: 1、 猜谜语 ① “今天刘老师要给大家猜个谜语,让你们猜猜这是什么小动物。”(老师讲谜语) ② “你们猜到是什么小动物了吗?”(幼儿回答) ③根据幼儿的情况可以再说一遍谜语。 ④老师揭开谜底(蜘蛛)“那你们看到过蜘蛛吗?谁能说说看蜘蛛是怎样的?”幼儿回答完后,老师给幼儿在投影仪下看图片。让幼儿看着图片说说蜘蛛的外形特征。老师在旁解释(蜘蛛有8只脚、它的头和胸是呈圆形和椭圆形)“那你们知道蜘蛛有什么本领吗?(幼儿回答)那蜘蛛织网是为什么呀?”(幼儿回答) ⑤ “那接下来刘老师就讲一个故事,你们听听看蜘蛛有什么本领,它有了这个本领到底怎样了?”

  • 大班科学教案:借尾巴

    大班科学教案:借尾巴

    2、享受听故事的乐趣。活动准备: 《借尾巴》的课件。 活动过程: 一、以讯问的口气引出课题,激发小朋友的兴趣 师:小朋友有没有见过小兔子的短尾巴啊?今天老师就给小朋友将一个关于小兔子的短尾巴的故事,小朋友想听吗? 二、师有感情的讲述故事进行提问,帮助幼儿了解动物尾巴的作用。 1、小兔子为什么想要借尾巴啊?

  • 大班科学教案:家用电器

    大班科学教案:家用电器

    活动目标:1、在交流分享中认识各种家用电器的名称,感受家用电器在人们生活中的用处。2、对生活中的家用电器感兴趣。 活动准备:1、前期经验:幼儿观过商厦里的电器专柜,并实地进行观察、记录、询问。2、家用电器的录像。3、幼儿在家里寻找各种家用电器,并以图画的形式记录下来。 活动过程:一、了解家用电器的概念。1、老师使用吹风机:“这是什么?它有什么用处?它通过使用什么才工作的?  (知道吹风机是通过使用电才开始工作的)2、老师小结:我们家里使用的一些能够方便我们生活、使用电的机器,我们称他们家用电器。二、介绍自己家里的家用电器。1、老师导入:你们家里面有哪些家用电器,我们一起交流一下。2、幼儿介绍自己在家里寻找到的各种家用电器。3、数数自己家里有几样家用电器,比一比谁家的家用电器多。4、老师小结:我们每家都有很多家用电器,这些不同的家用电器也有些什么用处呢?三、交流各种家用电器的用处。  播放家用电器的录像,边看边讨论。(电视机、电冰箱、洗衣机、微波炉、空调、浴霸、电饭锅、抽油烟机、轧汁机、吸尘器、电熨斗等等)1、这是什么?有什么用处?2、它们的形状、颜色一样吗?为什么要不一样?(满足人们不同的喜好)3、随机提问:你同意他的说法吗?还有什么意见?4、你们还有什么问题吗?可以提出来大家一起讨论?5、老师小结:家用电器用处可真大,它们给我们生活带来了方便。

  • 小学科学鄂教版三年级上册《玩小车》说课稿

    小学科学鄂教版三年级上册《玩小车》说课稿

    (一)实验教学目标:1.知识与能力:①了解磁铁间同极相斥,异极相吸的性质;②认识磁铁的南北极,知道磁铁能指南北方向。2.过程与方法:①学会做磁铁指南北及磁铁间同极相斥、异极相吸的实验;②能画出实验示意图,并标出方向。

  • 人教版小学语文下册说课稿《学弈》《两小儿辩日》

    人教版小学语文下册说课稿《学弈》《两小儿辩日》

    一、说教材  1.教材内容:九年义务教育六年制小学语文第十一册第八组第二十五课《学弈》。  2.教材简析:《学弈》这篇文言文选自《孟子·告子》,通过弈秋教两个人学下围棋的事,说明了做事必须专心致志,决不可三心二意的道理。文章先说弈秋是全国最擅长下围棋的人,然后讲弈秋同时教两个学习态度不同的人下围棋,学习效果截然不同,最后指出这两个人学习结果不同,并不是在智力上有多大差异。文言文是古代文明传承的媒介,虽与现代文在用词造句、朗读上有很大差别,但两者却有着千丝万缕、不可分割的内在联系

  • 幼儿园小班英语教案:I like ……

    幼儿园小班英语教案:I like ……

    1.复习所学颜色单词。 2.学习句型“I like …….”活动难点: 1.能根据老师的指令作出恰当的反应。 2.能大胆表述自己喜爱的颜色。 三、活动目标: 1.巩固颜色单词red﹑yellow、blue、green﹑pink﹑purple﹑black. 2.初步感知﹑学习句型“I like …….”能表述出自己喜爱的颜色。 3.培养幼儿对英语的兴趣。 四、活动过程: 1.复现已学的颜色单词。 T: What colour?C: Yellow/Black… T: Red? C: Yes./No. Blue.

  • 幼儿园小班英语教案:Eight Little Baby Ducks

    幼儿园小班英语教案:Eight Little Baby Ducks

    活动目标:1、幼儿能积极的参与游戏,培养孩子们的英语学习兴趣,在游戏中习得英语。2、学习儿歌《Eight Little Baby Ducks》 3、能大胆创作,体验交流、合作的快乐。  活动准备:1、8张小鸭图片、小鸭戏水挂图一张2、录音机、歌曲磁带3、卡片:小猫、小鱼各十张4、小鸭头饰25个   活动过程:1、热身活动:   游戏:Big Wolf(评析:通过游戏,充分调动幼儿情绪,烘托课堂气氛,为幼儿创造一个快乐的英语氛围,提高孩子们的学习兴趣。)

  • 幼儿园小班英语教案:Good night(晚安)

    幼儿园小班英语教案:Good night(晚安)

    2、能够正确运用句子。 活动准备: 1、玩具娃娃一个。 2、晚上的图片一张。 3、火柴和一支蜡烛。 活动过程: 一、问好,做律动《幸福拍手歌》。 T:Good morning ,boys and girls.Now ,let’s do the actions,Are you ready? C:Yes.(师幼一起律动。) 二、导入 出示晚上的图片(画有星星和月亮),利用图画导入单词。 T:Boys and girls。When does the moon rise up.?(月亮什么时候出来的?) C:晚上. T:Night

  • 幼儿园小班英语教案:Do you like an apple

    幼儿园小班英语教案:Do you like an apple

    活动准备: 1、一袋水果,内有苹果、梨、橘子、香蕉各一个。 2、配套磁带 活动过程: 一、1、问好,做律动《幸福拍手歌》。 2、复习歌曲《How do you do ?》 二、学习新内容 1、导入 游戏:奇妙的口袋 找一名幼儿从“奇妙的口袋”中里拿出水果,教师导入所学单词。 T:What’s this?C:苹果 T:yes, apple.C:apple. 同种方法其他水果。

  • 人教A版高中数学必修一对数函数的概念教学设计(1)

    人教A版高中数学必修一对数函数的概念教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。

  • 人教A版高中数学必修一对数函数的概念教学设计(2)

    人教A版高中数学必修一对数函数的概念教学设计(2)

    对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?

  • 人教A版高中数学必修一对数函数的图像和性质教学设计(1)

    人教A版高中数学必修一对数函数的图像和性质教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。

  • 人教A版高中数学必修一正弦函数、余弦函数的图像教学设计(2)

    人教A版高中数学必修一正弦函数、余弦函数的图像教学设计(2)

    由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.

  • 人教A版高中数学必修一正弦函数、余弦函数的性质教学设计(2)

    人教A版高中数学必修一正弦函数、余弦函数的性质教学设计(2)

    本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.

  • 人教A版高中数学必修一指数函数的概念教学设计(2)

    人教A版高中数学必修一指数函数的概念教学设计(2)

    指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3正态分布教学设计

    人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

上一页123...277278279280281282283284285286287288下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。