一、创设情境,引出话题1.听故事《一杯牛奶》,想想其中蕴含了怎样的道理?一个生活贫困的男孩为了积攒学费,挨家挨户地推销商品。他的推销进行得很不顺利,傍晚时他疲惫万分,饥饿难耐,绝望地想放弃一切。走投无路的他敲开一扇门,希望主人能给他一杯水。开门的是一位美丽的年轻女子,她笑着递给了他一杯浓浓的热牛奶。男孩和着眼泪把它喝了下去,从此对人生重新鼓起了勇气。许多年后,他成了一位著名的外科大夫。一天,一位病情严重的妇女被转到了那位著名的外科大夫所在的医院。大夫顺利地为妇女做完手术,救了她的命。无意中,大夫发现那位妇女正是多年前在他饥寒交迫时给过他那杯热牛奶的年轻女子!他决定悄悄地为她做点什么。一直为昂贵的手术费发愁的那位妇女硬着头皮办理出院手续时,在手术费用单上看到的是这样七个字:手术费:一杯牛奶。那位昔日的美丽的年轻女子没有看懂那几个字,她早已不再记得那个男孩和那杯热牛奶。然而,这又有什么关系?
一·导入(主持人)同学们,我们青少年是祖国的花朵,是祖国的未来,我们的安全陪受家人和老师关注。为了我们安全,今天我们就开一个校园安全主题班会。二·关于校园安全1·当我们迈着轻快的步伐来到学校时,我们知道新的一天开始了,可是我们对安全知识又了解多少呢?下面我们来说说我们学校的安全知识:学校是我家,安全文明靠大家。出入校门要下车。进出教室不拥挤。上下楼梯靠右行。在校园追跑打闹。不爬学校的围墙,门窗、围栏、树木、球架。不携带易燃、易爆、有毒物品及凶器进校。若照明灯和电风扇等电器发生故障,不得私自动手排除,应报告教师或总务处,由学校电工进行故障排除。大扫除时注意安全,对高处的玻璃窗,不要勉强擦拭。做文明学生,不要有任何故意伤害他人、窃取他人财物的行为,不在任何场所参与打架斗殴。察觉到有不安全因素应及时报告师长。遇事冷静,以保全自身安全为重,不冲动蛮干。
三、游戏体验,感受合作1.玩过拔河比赛吗?先分工一二组为A组,三四组为B组,每组6人上来参加比赛,那应怎样选队员呢?指名回答(谁选?推荐什么样同学呢?)2.参赛同学该怎样做呢?商量商量。下边的同学也商量商量该做些什么?3.比赛就要开始了,想拿冠军吗?这是大家的共同目标。(板书:目标)4.冠军队留下,比赛前是怎样商量的?(板书:分工协作)有什么诀窍吗?(板书:齐心合力)下面的同学在做什么?所以你们也是冠军队的员。5.教师小结。四、联系实际,指导行为1.生活中有哪些事要齐心合力做的事吗?指名全班交流。2.小结。3.大人们是怎样合作的呢?(课件出示:千手观音视频,神七、地震救援等图片)教师解说千手观音视频,猜测神七有多少人参与了研究呢?4.小结。合作不仅是人多力量大,更是齐心合力、分工协作。
【活动主题】迎难而上 【活动目的】1.使学生了解迎难而上,培养坚强意志。2.在学习和实践中充分发挥自己的主观能动作用,百折不挠克服学习上的各种困难,以顽强的意志提升自我,实现既定目标,达到成功的彼岸。 【活动准备】1.准备一个不管是顺境还是逆境,都不放弃自己的追求,生命不息、奋斗不止、坚韧不拨的故事。2.准备不同意志力的学生对学习影响的情境。【活动过程】一、班主任引题每个人的一生不都是一帆风顺的,都会有这样或那样的烦恼,而这些烦心事就是我们通常所说的困难。今天我们就围绕“困难”这个话题开一次班会。二、正视困难1.面对困难的两种态度甲:人的一生难免会遇到这样或那样的烦恼和挫折,“万事如意”“心想事成”只不过是人们的美好祝愿而已。
一、放《找朋友》音乐开场,主持人讲开场白。同学们,我们全班同学在一起生活学习几年了,有些成为了好朋友,有些却没说过几句话,你受同学欢迎吗?你会和同学交往吗?通过今天的活动,相信大家会对这些问题有一定的了解。二、进行“相互采访”活动。1.全班同学围成圆圈坐,两人一组,互相自我介绍,内容包括:(1)自己的姓名、年龄、家庭情况等;(2)自己的兴趣、爱好、特长、个性特点等;(3)其他有关的情况。2.访问活动结束后,每个同学介绍被他访问的同学,再由被介绍者补充。教师告诉其他同学要注意听,记住班上每个同学的特征,然后进行认人比赛。3.把同学分成两组,然后要求每组同学一一上台说出对方相邻者的采访情况,答对得分,写在记分牌上,得分高的一组获胜,得分低的一组唱一首歌。三、带着你的朋友来聊一聊。请一些同学邀请自己在班上的好朋友上台,说说为什么能成为好朋友,或朋友之间一些难忘的事,并接受大家的祝福。(大约3-4对朋友)
三、开展过程:1、以猜谜语方式引入主题——手机"你讨厌,你讨厌,天天亲我嘴和脸,你无耻,你无赖,天天拉我裤腰带,你无情,你无意,只会花我的血汗钱。(猜一物品)”随着时间的改变,手机的发展越发迅速,手机的使用愈发智能化和方便化,很多人只知道手机的"面",不了解手机的真正的内在,根据ppt让同学们更加认识到手机的历史,手机的时代变化性。2.讨论环节。了解了手机的历史性后,告诉同学们,在唯物主义中,任何事物都有两面性,让学生结合自己的生活实例列举出手机的利与弊。通过资料总结,让同学们充分了解手机的利与弊,尤其让同学们了解手机的几大弊端,告诉同学们如何正确的使用手机,对于手机的利与弊有一个全面的认识。
2、学习添画背景的方法。 3、感受比较作品添画背景前后的不同视觉效果,激发孩子细致添画、涂色的兴趣。活动准备: 1、幼儿每人一张印好手印的作品。 2、不同块状背景图片。 3、有无背景的两幅范画。活动过程: 一、对比两幅手印画(一幅有背景、一幅没有添画背景)感受比较作品添画前后的不同视觉效果,激发幼儿添画作品背景的兴趣。 这里有两幅花瓶的图画,你们喜欢哪一幅?为什么? 小结:手印本来只有一种颜色,颜色很单一,但是添画了彩色的背景,不仅更加突出了花瓶,还使得整幅画更加漂亮了。
目的:1、让幼儿学会仿编和解答4的加减应用题。2、在生活情景中能根据水果卡片自编4的加减应用题。准备:1、知识经验准备:请家长带 幼儿去买东西,使幼儿了解一个买与卖的过程。2、物质准备:准备各种水果卡片,人手4个替代物作钱。过程:一、以“帮农民伯伯摘果子”引入。“小朋友,果园里的水果都成熟了,农民伯伯想请你们帮他摘水果,你们愿意吗?”(愿意)二、游戏“摘水果”。师交代游戏玩法和规则。三、分类活动:分水果。1、引导幼儿将自己所摘的水果跟同伴之间进行交流。2、交代任务:将各种水果分别放在筐里。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
活动目标: 1、在认识几何图形的基础上,通过联想添画成简单的物体,并变现其主要特征。 2、能够发挥想象,创造性的进行图形添画活动,发展创造力。 3、愿意参与图形添画活动,在活动中体验创造的快乐。活动准备: 1、每组一小筐六种不同的几何图形(每种图形若干个)、勾线笔、蜡笔等。 2、画有不同图形(大小不一)的作业纸若干张,拼图添画的范例。活动过程: 一:巩固几何图形 1、师:今天老师带来了几个图形,我们一起来看看,提问:都有什么图形? 2、师:哟,小朋友真聪明,都认识了这些图形。你们知道吗,这些图形可神奇了,他们还会变魔术呢。
活动准备:小朋友表情照片若干小火车 活动过程第一环节:情景导入,激发幼儿兴趣。以边念儿歌边开火车的形式,激发幼儿活动的兴趣。 1、边念儿歌边开火车入场,引发幼儿的兴趣。 2、认识心情火车。 3、让幼儿数数有几节车厢。 第二环节:师生互动说说表情。感知开心、生气、伤心的心情。第一次让幼儿找自己的照片。第二次找好朋友的照片。体现了层次的递进性。 1、坐上心情火车,请幼儿找自己的照片,说说自己的照片。 2、第一次交流,说说自己的表情,并说出原因。
1、结合具体生活场景,能运用所学的乘法口诀解决简单的实际问题,通过图与式的对应,进一步理解乘法的意义。 2、能熟练运用口诀进行计算,提高灵活运用口诀解决实际问题的能力。 3、体会数学与实际生活的联系,培养用数学的意识,体验口诀在解决问题中的作用。 运用所学乘法解决简单的实际问题。 结合实际情景理解乘法的意义。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、谈话导入:在前面的学习中,我们认识了乘法,而且还学习了2和5的乘法口诀。这节课,老师想请同学们用这些跟乘法有关的知识来帮助老师一起解决生活中遇到的问题,一起来看一看吧。快乐休息时间到了,学校的大操场突然热闹起来了,你们一定非常喜欢课件活动吧!看,操场上同学们有的在玩老鹰捉小鸡的游戏,有的在进行乒乓球比赛,有的在跳绳,还有的在踢毽子……真热闹啊!
一、 生成背景 秋天到了,老师带着孩子们在幼儿园里散步,有的说“小草变成黄色了”,“秋天到了,树叶也变黄了。”“老师,老师。我还看到过红色的树叶”。孩子们高兴地在幼儿园里找着还有什么颜色的树,回去后,我们和孩子们一起制作了手掌树,有的绿,有的黄,有的红……一棵五颜六色的树生长在我们班活动室里。我们继续和孩子们在生活中发现哪里有颜色,找一找,说一说,画一画,由此生成了“彩色世界”的主题。 二、 课程目标与网络图 目标: 1、探索周围事物的颜色。 2、学习观察生活中物品的颜色,形成相应的颜色概念。 3、尝试运用多种形式感受颜色。 4、体验色彩表化的奇妙。 5、参与色彩游戏,并体验游戏的乐趣。