方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
1、 谈话引入新课六一快到了。小朋友们在老师的带领下忙着布置自己的教室呢!可是他们遇到了一些数学上的问题,你能帮他们一快解决吗?2、教学例1。(1)、投影出示主题图引导学生仔细观察。说说他们遇到了什么问题?(2)、引导学生解决问题并列出算式。板书:56÷8(3)、引导学生得出算式的商。问:你是怎么计算的?(想乘算除)(4)、学生独立解决:要是挂7行呢?你能够解决吗?学生说出自己的计算结果,并把求商的过程跟大家说一说。2、 小结:在今天的学习中我们不仅帮小朋友们解决了数学问题,而且还进一步学会了利用乘法口诀来求商。在以后的除法中只要大家能够熟记口诀,就能很快算出除法的商了。
教学效果:部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.第六环节 课后练习四、教学反思数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学的数学知识解决一些生活问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”.在解决实际生活问题的实例选择上,我们尽量选择学生熟悉的实例,如:学生身边的事,购物,农业,工业等方面,让学生真切地理解数学来源于生活这一事实。有些学生对应用题有一种心有余悸的感觉,其关键是面对应用题不知怎样分析、怎样找到等量关系。在教学中,如果采用列表的方法可帮助学生审题、找到等量关系,从而学会分析问题。可能学生最初并不适应这种做法,可采用分步走的方法,首先,让学生从一些简单、类似的问题中模仿老师的分析方法,然后在练习中让学生悟出解决问题的窍门,学会举一反三,最后达到能独立解决问题的目的。
4、读歌词:老师带领同学有感情的朗读两边歌词。5、解决难点:二分音符和附点四分音符的节奏练习。6、教师范唱歌曲:7、学生演唱歌曲:老师找出学生唱的不准确的地方。8、教师指导学生演唱:通过老师和学生的对比唱来改正学生的错误。9、师生接唱。10、男女生接唱。师:歌词中说到我是草原小牧民,手拿扬鞭多自豪!那么我们在唱这首歌的时候应该用怎样的情绪呢?11、学生齐唱歌曲 :(三)、拓展部分:1、观看课件蒙古族的民俗:师:同学们这是一首蒙古族的民歌,同学们对蒙古族有哪些了解呢?2、欣赏《筷子舞》:师:可以看出蒙古族是一个能歌善舞的民族,让我们一起来欣赏一段具有蒙古族代表的舞蹈《筷子舞》吧!3、师表演筷子舞:师:同学们看老师给你们带来了什么?生:筷子。师:老师还给同学们准备了一段筷子舞想看吗?那就给老师点掌声吧!
一、说教材《歌唱二小放牛郎》是人音版新课标音乐五年级的一首歌曲。它是一首以发生在抗日战争时期的真实故事为题材而创作的叙事歌曲,歌曲浓郁的民歌风格的旋律,像阵阵清风传送着一个动人的故事,放牛娃王二小以自己的勇敢和机智,把日本侵略军带进了八路军的埋伏圈,使我们的老乡和干部得到了安全,敌人受到了惩罚,而我们的小英雄却献出了自己的生命。这种叙事歌曲是在民间分节歌的基础上发展起来的,运用了起承转合的四句体单乐段结构,以一个精心锤炼,富于概括力的曲调配以多段歌词,曲调优美动听,又略带悲凉的色彩,感情容量较大,充分寄托着人们对抗日小英雄的哀思。教材的编写意图是激发和发展学生对音乐的兴趣,丰富情感体验。基于对教材的理解和对学情的把握,我把本课的教学目标确立为:1、通过欣赏歌曲,了解王二小的英雄事迹,了解歌曲的时代背景。
《洋娃娃和小熊跳舞》是一首富有童话色彩的儿童歌曲,旋律简洁流畅,节奏明快,舞蹈性很强,适合于边表演边歌唱。本课我不单单停留在这一首歌的教学上,增加了舞蹈表演内容,形式活泼,引导学生加深对歌曲的认识,并从中感受美、发现美、创造美。《音乐课程标准》指出:“通过教学及各种生动的音乐实践活动,培养学生爱好音乐的情趣,发展音乐感受与鉴赏能力、表现能力和创造能力”。根据教材内容和学情实际,我确定本课的教学目标为1、学生能用活泼、欢快的歌声演唱歌曲《洋娃娃和小熊跳舞》,掌握歌曲中的XXXXX节奏型。2、培养学生动作协调性,能跟着音乐有表情地进行律动,并能模仿洋娃娃和小熊的动作大胆进行歌表演,体验与他人合作的快乐。基于以上教学目标,我把教学的重点定为:有表情演唱,把难点定为:大胆进行歌表演,体验与他人合作的快乐。
在中提琴演奏一串同音反复的、三连音的过渡之后,由单簧管、大管和圆号呈现第二主题,它比较抒情:随后,钢片琴演奏一段华彩。这时,A段再现,这一次钢片琴比原来提高八度演奏,音色显得更加明亮。最后,轻轻地结束全曲。二、教学目标初步了解芭蕾舞剧,感受《糖果仙子舞曲》优美的情绪。三、教学重难点教学重点对乐曲进行体验实践,听辨乐曲的情绪。教学难点听辨不同乐器的音色特点。四、教学过程(一)导入播放《糖果仙子舞曲》,学生听辨音乐的情绪(优美动听)(二)感受乐曲导语:《糖果仙子舞曲》是舞剧《胡桃夹子》中糖果仙子一个人的独舞,我们来了解一下《糖果仙子舞曲》的故事。1.芭蕾舞剧《胡桃夹子》简介教师结合图片,简单讲述童话故事《胡桃夹子》以及芭蕾舞剧的特点。2.再次欣赏乐曲《糖果仙子舞曲》,引导学生想象音乐表现的情景。 随音乐,再次聆听,感受乐曲中乐器的音色特点。
3、拓展要求:在学生对歌曲有了一定的了解之后,我会让学生在歌词中适当的地方加入语气词,使歌曲更生动、形象。例如:“妈妈告诉我,家乡没有山”这句歌词,显得有点惋惜和遗憾之情,我觉得用“唉”比较好,下面的就分组讨论。每小组派一个代表唱出自己组里填的语气词。在所有组里的语气词里选一组最好的,确定下来。全班一起演唱,并加上确定的语气词。唱歌比赛:将学生分4个组,一组高声部、一组低声部、一组加语气词、一组加打击乐器(如沙锤、双响筒、碰玲),增强他们的合作意识和合作默契。4、小结在课堂小结时我先安排了学生谈一谈这节课的感想,如:这节课你学到了什么?歌曲中你最喜欢那一句?而且对那些有创意的学生我还及时的发给他们小奖品。在本课的教学中我以表扬和鼓励为主,随时引导学生在音乐活动中开展自评互评和老师的随堂评价,以提高学生的乐感和审美能力。
(4)演一演视障生由于生理缺陷,在他们的头脑中很难形成动作形体概念,用情景教学法,使学生身临其境,要求他们不一定按歌曲要求的动作表现,只需要他们把那种对音乐的理解用自己的方式表现出来,边听音乐边表演.通过这样的训练,提高学生的肢体语言能力,同时能大胆发挥想象,做自己对音乐理解的动作,通过动作使其更深刻的理解歌曲.对于低视生让他们通过看课件及对歌曲的理解,创遍简单的舞蹈动作,使其与歌曲的情节相融合,更深刻的体味歌曲内涵.(5)复听歌曲一遍让学生仔细的听乐曲,感受乐曲所带给的独特感受,让他们融入到乐曲中,展开想象,发展他们的空间想象力和创造力,同时提高他们的鉴赏水平.六、课堂小结感谢从小养育我们的父母;感谢一直关心着我们的父母;感谢为我们而操劳的父母……要感谢的太多太多了,就让我们怀着一颗感恩的心,报答我们的父母吧!
尉氏鸭蛋及养鸭基地贾鲁河畔尉氏烩面是河南烩面的一个重要分支,与其它地方不同的是尉氏烩面是羊肉浓汤锅中下面并取汤,尉氏烩面是以独家祖传秘方调制的香料配上滚滚的羊汤而成。放入羊肉丁、葱花、香菜或是五香菜,芝麻酱,同时以个人口味放入用牛羊油泼的油辣椒,浓香味美、回味无穷······人们说到尉氏县洧川镇,首先想到的一定会是洧川豆腐。有许多人也是因为洧川豆腐,才认识了洧川镇。因为这小小的豆腐在洧川镇的周边县市实在太有名了,迄今已有2000多年的历史。 洧川豆腐与众不同之处在于其表面呈琥珀色,切刀处为纯白色,韧性十足,能用麻绳串起来,可用秤钩挂着称,放在锅里越煮越筋,烹炸煎炒则风味各异。由于洧川豆腐的制作一直采用传统工艺,2011年,洧川豆腐被评为河南省非物质文化遗产。
学生模仿玩具兵排着整齐的队伍,挺胸抬头走路的神气样子。(2)欣赏B段,播放课件。师:正当玩具兵们玩的兴高采烈的时候,又发生什么事儿呢?学生描述B段音乐,学生表演故事情节。师:你能模仿玩具们是怎样跳舞和玩耍的吗?学生模仿其他玩具唱歌跳舞和玩耍的样子。(3)欣赏C段,播放课件。师:大家刚才玩的那么高兴,为什么突然都不见了呢?学生通过看课件回答老师的问题。师:小主人醒了,玩具们惊慌失措的逃回了玩具箱。惊慌失措是什么样子?大家能不能表演这段?随音乐表演本段。学生表演惊慌失措的样子和“逃”回玩具箱的动作。4、随音乐集体表演。老师讲述故事并及时提示大家进行完整表演。四:课堂小结。师:这节课我们听赏了这首好听的《木偶兵进行曲》,还玩了玩具兵的游戏。你开心吗?如果很开心,就让我们象玩具兵那样神气的走出教室好吗?
a.模仿老师一句一句地,有节奏地读歌词,注意老师手上的木鱼敲打的节奏。b.和老师一起把歌词读一遍,注意强调切分节奏的读法。c.学习歌曲:第一遍,老师一句一句地教学生唱,同时用电子琴弹出旋律。第二遍,老师一边一句一句地教唱,一边做出舞蹈动作,学生在下面模仿。d.学生听老师的电子琴伴奏,齐唱歌曲。2.歌曲演唱:演唱a.“有请我们班的小歌星子喻同学为我们演唱好不好?”b.“我们来组个乐团,怎么样?” c. “那我们的乐团起什么名字好呢?”“叽叽喳喳合唱团。”d. “现在老师宣布,我们的叽叽喳喳合唱团正式开演!”小结:“今天老师很高兴和同学们一起学习《蜗牛与黄鹂鸟》这首歌曲,老师看到了同学们的精彩表演,心里非常感动。在这里,老师希望同学们今后要像蜗牛一样,在学习上或者是生活上,不管遇到什么困难都勇敢面对,克服困难,坚持到底!同学们加油!
一个情境:“歌中的小牧童把牛背当成了飞船,想象着长大后成为宇航员的样子。同学们,如果你骑在牛背上,双手握着方向盘的时候,你会想到了什么?”学生就能很快地联想到开汽车、开飞机等。再引导他们把想法替换到歌词中唱一唱。这一学习方式不仅为学生创设了民主、宽松、自由的氛围,更激发了学生的创新思维,增强了自信心。4.我利用学生好动、表现欲望强和模仿能力强的特点,鼓励学生根据歌曲创编简单的动作进行表演,并和他们一起表演,从而拉近了师生的距离,激发了学生的学习兴趣,学生的学习积极性也得到充分的调动。第五环节:欣赏图片拓展知识这一环节主要是让学生了解有关航天知识,拓宽学生的文化视野,提高学生的人文素养。引发学生对自然科学的热爱,启发学生从小要树立远大的理想。第六环节:总结全课升华情感鼓励学生从小树立远大的理想,努力学习、用于探索,以实现美好的理想。小结:以上是本课的总阐述,不到之处请指正
教师有感情的教唱歌曲,学生感受歌曲的情绪、节奏、节拍的同时跟着学唱。在这基础上学唱歌词,随琴听唱,要求注意 3/4 拍的强弱规律, 请同学们打拍子随老师一起唱,再组织同学们积极参与课堂活动,教师给予评价。(3)随歌起舞美的旋律、美的歌词更需要美的舞姿。为了激发音乐学习兴趣,我在本歌曲完全好以后,让学生们用舞蹈来表现歌曲,组织学生通过自主合作、互相启迪、探讨来再现歌曲并进行歌舞创编。教师给予启发和指导舞蹈动作,强化老师参与者和合作者的身份,体现师生融洽关系。(三)总结同学们这节课开心吗?这样的学习生活幸福吗?那我们要珍惜这份幸福,让我们再次唱响幸福,为幸福喝彩。(播放歌曲,让学生听着或唱着,带着愉快的心情去享受课间活动的快乐。)
(1)在聆听时注意跟着细声的哼唱,再次感受歌曲的情绪,感受四三拍的特点。(2)注意观察歌词,看看歌曲描写的是哪些季节。这些呢都是这个小朋友的快乐童年,小朋友说他想将他的快乐童年分享给我们,同学们愿意接受吗?四、学习歌曲 1、好,让我们一起来分享这个朋友的快乐童年,请同学们跟老师有感情的朗诵歌词。(边打拍子,边读歌词)同学们,通过刚刚的聆听和现在对歌词的朗读,你认为歌曲可分为几部分?歌曲可以分为两部分,第一部分、第二部分。2、跟琴学唱歌曲。第一部分要表达出喜悦、自豪的心情,声音要轻盈有弹性;第二部分歌词注意欢快的情绪,声音要舒展、连贯。3、完整演唱乐曲。五、课堂小结最后,让我们随着优美的音乐,为我们的童心插上小鸟的翅膀,一起唱起来,跳起来,飞进大自然的怀抱中。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。