一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。4、检验结论。(1)我们从100以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?(2)利用100以内数表来验证。(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。在本环节,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
2学情分析 1、这一课是一年级的“造型·表现”学习领域,一年级孩子自制力较差,注意力集中时间不长,缺乏一定的造型能力,但好奇心很强,表现欲望非常强烈,非常希望得到老师和同学们的认可,从他们的兴趣入手就能达到事半功倍的效果;2、教学方式应该是直观的;3、让学生通过欣赏与想象进行创作,激发他们对大自然的兴趣,感受大自然的美。
教学过程:一、组织教学,导入学习1.观察导入,激发兴趣(教具出示)2.教师和学生一起做猜节日的游戏,激发学生的兴趣。 每年的9月10日都是教师们最开心的日子,也是学生们表达对老师尊敬的日子,中国自古以来便有尊师重教的传统,《教师法》 第四条规定全社会应当尊重教师。
2学情分析 新入学的学生第一次接触正规化的美术课,对一年级学生来说是新 奇、有趣、好玩的,而且新生入学前所受的教育各不相同,心理因素 也不一样,在绘画上、工艺制作上一定有着自己的创造思维、想象能 力和自己的个性,但这些会造成学习的不一致性、习惯不统一化,给 美术课的课堂带来不必要的麻烦。因此, 对待这些刚进入课堂的小朋友, 我们在情感态度上要做出很大 的努力,小学生在思维的想象力、创造力方面发展的空间很大,所以 我们要好好把握机会, 激发孩子们对美术学习的兴趣,让孩子们能发 现美,有创造美的想法。
教学目标 知识目标:通过欣赏大自然的图片,感知大自然不同特点的美。 技能目标:能用自己喜欢的方式表达对不同自然美的感受。 情感态度与价值观:培养学生热爱大自然的情感,及爱护大自然的情感。 教学重点让学生感受大自然不同的美,了解大自然的丰富,并能用简单的语言表达自己的感受。 教学难点学习用审美的眼光去观察大自然。 主要教法启发引导法、自学尝试法 学习指导体验探究法辅助指导法 教学资源教师:教材、课件。 学生:教材、自然风光片 教学过程: 教学活动教学意图 教师学生
1、走进课堂、汇报总结因为是预习后的课,所以我直接问“昨天老师布置了预习作业,你都学会了什么”从孩子们掌握的知识切入,进行新授。让学生总结出2、5的倍数的特征,奇数与偶数的概念,以及既是2的倍数,又是5的倍数的特征。二、尝试练习检验学生预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。学生经过自己的努力初步理解和掌握了新的数学知识,要让学生通过做练习或解决简单的问题来检验自己预习的效果。既能让学生反思预习过程中的漏洞,又能让老师发现学生学习新知识时较集中的问题,以便课堂教学时抓住重、难点。因为是预习之后的课,所以练习题的难度比较高,安排了不同难度的练习题来巩固新知识。三、设置下节课预习任务设置下节课的预习任务,是进行下节课内容的铺垫,让孩子们按着一定的方案有计划、有目标地对下节课进行预习,以便下节课的教学活动。
三、巩固应用在这一环节,我设计了三个层次的习题,内容由浅入深,逐步提高,让学生体验到用数学知识解决实际问题的成功感,并给学生提供自主探索的时间和空间,从而产生积极的数学情感。第一个层次(基础练习):课件出示教材第28页中“试一试”的第一题,让学生根据情境中的信息,比较两题之间的异同,独立解答,然后交流解答方法,加深对百分数问题的理解。第二个层次(综合练习):课件出示教材第29页中“练一练”的第1、2、4题,鼓励学生独立分析题意,寻找等量关系,然后列方程解答。引导学生将题中的“二成”转化为百分数。第三个层次(提高练习):课件出示教材第29页中“练一练”的第5题,鼓励学生提出两个不同的问题并解答,培养学生根据统计图提供的信息提出问题的能力,使学有余力的学生有所提高。四、总结评价1、学生归纳总结在本节课你学到了什么,有哪些地方要提醒同学们注意。2、师作适当的补充和评价。此环节通过师生互动,生生互动,经历一次再学习,再巩固的过程。
1.注重创设情境,让学生从现实生活中学习数学。“良好的开端是成功的一半。”精彩的开篇不仅很快集中了学生的注意力,而且调动了学生主动参与学习的积极性。所以课的开始,我设计了王叔叔的例子.我的话语一落下,同学们就纷纷举起了手,发表自己的看法。首选的办法就是存银行,并且说出储存银行的好处。一是可以获得利息增值;二是可以支援国家建设。学生了解了储蓄的意义,从而引出课题,使他们感到要学习的内容与现实生活的紧密联系,有利于提高学习的兴趣.2、给学生充足的探索空间,让学生成为学习的主人。课堂上,让学生主动地进行数学学习,动手实践、自主探索、合作交流。3、积极引导学生把知识应用到生活中。数学来源于生活,也服务于生活,引导学生学会把课本中的所学,应用到日常生活中,学生对存款中的有关计算利息,本金、利率等知识了解的同时,也能结合学习中的体验开展实践交流活动,形成良好的消费观,也能把储蓄、纳税的知识应用到现实生活中来。
(四)引导观察,发现规律1.解决的问题(1)观察发现分数的基本性质(2)培养学生观察--探索--抽象--概括的能力。2.教学安排(1)提出问题:通过验证这两组分数确实相等,那么,它们的分子、分母有什么变化规律呢?(2)全班交流:不论学生的观察结果是什么,教师要顺应学生的思维,针对学生的观察方法,进行引导性评价①观察角度的独特性②观察事物的有序性③观察事物的全面性等。(注意观察的顺序从左到右、从右到左)引导层次一:你发现了1/2和2/4两个数之间的这样的规律,在这个等式中任意两个数都有这样的规律吗?引导学生对1/2和4/8、2/4和4/8每组中两个数之间规律的观察。引导层次二:在1/2=2/4=4/8中数之间有这样的规律,在9/12=6/8=3/4中呢?引导层次三:用自己的话把你观察到的规律概括出来。
2.重点难点: 重点:感知10以内的数,初步认识数字10。 难点:学习数字和图片、圆点进行匹配。 二、过程实录: (一)活动目标: 1.感知10以内的数,初步认识数字10。 2、理解10表示的实际意义,学习数字和图片\圆点进行匹配。 3.大胆参与数学操作及交流活动。 (二)活动准备: 1、每张座位上贴上1-9的数字,每人一张胸卡(有数量不等的小动物) 2、数量为78910的动物卡片若干,大色子一个 (三)活动过程: 1、复习9以内的数量 1)导入:春天来了,我们一起去郊游吧!(幼儿随郊游音乐进场) 2)游戏:找座位,根据胸卡上图片的数量找相应的座位号。 师:我们每人都挂了一个卡片,看,我的卡片上有什么?有几只?那要去找数字几呢?(9只刺猬找9号座位,这就是对号入座)请你看看你的卡片上有几只动物应该找几号座位?
一、说教材《有趣的算式》是北师大版小学数学四年级上册第三单元《乘法》中的内容。它是在学生已经学会运用计算器进行一些简单的四则运算的基础上来进行教学的。学生学了这部分内容,能为以后进一步体会探索的过程和方法,发现乘法的结合律和分配率打下基础。为了更好地体现《数学课程标准》的理念,培养学生的推理能力,促进学生数学思维发展,使学生在面临各种问题时,能够从数学的角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决生活中的问题,感受到数学在生活中的意义。二、说目标根据以上对教材的理解与内容的分析,按照新课程标准4~6学段数与代数中的要求,我将本节课的目标定为:1、知识与技能目标:通过有趣的探索活动,能发现有趣的乘法算式中蕴含的规律,并有条理的进行归纳概括,发展合情推理能力。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。