提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

【高教版】中职数学基础模块上册:5.3任意角的正弦函数、余弦函数和正切函数

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 人教版高中政治必修1树立正确的消费观教案

    人教版高中政治必修1树立正确的消费观教案

    教师活动:针对学生的辩论作点评、总结:(4)勤俭节约、艰苦奋斗勤俭节约、艰苦奋斗是我国的传统美德,是一种民族精神,而不是一种具体的消费行为。作为精神,它是永远不过时的。特别是我国还处在社会主义的初级阶段,生产力水平还比较低,还面临人口、资源等压力,我们更应该发扬勤俭节约、艰苦奋斗的优良作风。从个人思想品德的修养角度讲,有利于个人优秀品德的形成和情操的陶冶,是有志者应该具备的精神状态。当然,不能把勤俭节约、艰苦奋斗与合理消费对立起来,勤俭节约不是抑制消费而是说不要浪费。总之,以上四个原则,是科学消费观的具体要求,我们要理解和掌握这些原则,并用他们指导自己的消费行为,既有益于个人,也有益于社会,将促进个人的健康发展和社会的可持续发展。

  • 中班科学《我爱大树和小花》说课稿

    中班科学《我爱大树和小花》说课稿

    我今天说课的内容是选自幼儿园建构式课程中班下册科学教育活动《我爱大树和小花》。《新纲要》科学领域目标中明确提出了:培养幼儿爱护动植物,关心周围环境,亲近大自然,珍惜自然资源,有初步的环保意识。在我们生活的周围有各种各样的树和花,对于孩子来说既熟悉又陌生,每每在户外活动时孩子总会不经意地去看看、摸摸,有时还会说一句,如:这颗树好大哦,这朵花好漂亮哦,有时候还会进行追问,如:这颗叫什么树,这叫什么花……然而随着社会的进步人类慢慢淡化了对身边花草树木的爱护,甚至亲手破坏身边的环境,如:乱砍树木,乱摘花朵……结合中班建构式课程中的主题教学《大树和小花》的内容,我设计了符合中班幼儿年龄特点的教学活动《我爱大树和小花》,引导幼儿要保护身边的花草树木,清楚花草树木与人类的关系以及对人类的作用。通过挂图与教材的阅读理解保护花草树木的重要性,从而萌发幼儿爱护花草树木的情感。

  • 中班音乐教案:大黑猫和小老鼠

    中班音乐教案:大黑猫和小老鼠

    活动准备:1、五只小老鼠和大黑猫的图片。2、胸饰若干。 活动过程:(一)出示图片,创编歌词。1、今天我们班来了一位小客人,我们一起拍拍手请它出来吧!(幼儿拍手)2、从背后出示小老鼠,原来是“小老鼠”来了(加表情),小老鼠它长得是什么样子的?(眼睛小小的、圆圆的,还有个本领,会骨碌骨碌转;嘴巴尖尖的,幼儿学学,尾巴细细的、长长的)

  • 幼儿园中班社会教案:噪声和乐音

    幼儿园中班社会教案:噪声和乐音

    活动目标: 1、能区别噪声和乐音,了解噪声对人体、对环境的危害。   2、理解故事内容,了解角色的性格特点。   3、体会环境与人们生活的密切关系,萌发创造宁静环境的愿望。  活动准备: 1、经验准备:初步了解噪声的危害   2、物质准备:关于建筑工地的录像、录有鸟鸣、流水声的音乐,小兔形象一个教学过程: 一、观看录像感受噪声。   师:小朋友,我们一起看一段录像。   问:录像里是什么地方? 在建筑工地上有哪些声音? 二、交流讨论噪声和乐音的不同。   1.提问:我们刚才在建筑工地听到了什么声音? 这些声音听久了会有什么感觉? 2.欣赏一段鸟鸣声和流水声的录音。   提问:你听到了什么? 和建筑工地的声音相比,你喜欢哪一种声音?为什么? (幼儿自由讨论)

  • 中班音乐教案:洋娃娃和小熊跳舞

    中班音乐教案:洋娃娃和小熊跳舞

    2、用拍手动作表现节奏型。3、学习看图谱进行打击乐器演奏。活动准备:小熊和娃娃各一个人手一件打击乐器三、活动重点:学习用打击乐器为乐曲伴奏,并乐意参加表演。活动难点:学习看图谱进行打击乐器演奏,并学习分组表演。活动过程:一、在《小松树》的乐曲下进入教室。二、复习歌曲《买菜》①齐唱三、熟悉《洋娃娃和小熊跳舞》的乐曲旋律,感受乐曲欢快的情绪。①介绍乐曲名称②听音乐

  • 中班综合教案鸡妈妈和鸡宝宝

    中班综合教案鸡妈妈和鸡宝宝

    2、感知 “1”和“许多”。 活动准备: 1、老师扮鸡妈妈,幼儿扮小鸡。 2、活动场地布置许多树、草(草内有若干鸡蛋和一只鸭蛋)。 3、一幅《母鸡生蛋》图,鸭木偶一个。 活动过程: 一、找蛋 1、老师和幼儿一起唱歌曲《母鸡下蛋》。 问:鸡宝宝你们听见了什么? 2、师:哎呀,我生了好多好多的蛋不知道掉到哪里去了,请你们帮我找一找。 幼儿找蛋。 二、还蛋 1、引导幼儿发现其中有一只不同的蛋。 2、师:这一只蛋怎么不一样的?和你们手里的蛋有什么不同?(颜色、大小)它不是妈妈生的?会是谁生的? 3、鸭妈妈找不到自己的蛋会怎样? 4、请鸡宝宝把鸭蛋还给鸭妈妈。看看鸭窝里有没有鸡妈妈生的蛋。

  • 中班语言课件教案:北风和太阳

    中班语言课件教案:北风和太阳

    【活动目标】1、引导幼儿理解故事内容,知道北风爷爷和太阳公公其实各有所长。2、敢于在集体面前用较清楚的语言表达自己的观点。3、初步帮助幼儿树立自信心。 【活动准备】北风和太阳图片各一张。 【活动过程】 1、引起幼儿兴趣,帮助幼儿熟悉故事中的两个角色(1)出示北风和太阳师:它是谁?(北风)对,是北风爷爷。谁来说说看北风爷爷有什么本领?它又是谁?(太阳)太阳公公又有什么本领呢?(2)小结师:北风爷爷有北风爷爷的本领,太阳公公有太阳公公的本领,那它们两个究竟谁的本领更大呢?(引起幼儿听故事的兴趣)2、在讨论中帮助幼儿理解故事内容(1)讲故事第一部分师:有一天,北风爷爷和太阳公公发生了一次争吵,它们在争论谁的本领大,各人都夸自己的本领强。忽然看见一个人在赶路,他外面穿着一件大衣,于是他们决定谁能叫这个人把身上的大衣脱掉,谁就算赢了。

  • 中班语言课件教案:风儿和云彩

    中班语言课件教案:风儿和云彩

    活动过程: 1、我说的谜语你们猜: 身体轻又轻,空中来旅行。有时像棉絮,有时像鱼鳞。是什么?(云彩) 2、那跟老师一起去看云彩吧。 (1)、看看这朵像什么?这朵像什么?还有这个呢?跟小朋友说一说像什么?小朋友说一说平常你见过的云彩还像什么? (2)、这天上的云彩可有趣了,想一想是谁让他们变的一会像这个,一会像哪个的?(风) 3、今天老师就给小朋友带来一首优美的散文诗,就是关于云彩和风的,请小朋友找个小椅子坐下,仔细听一听,诗中都是说了些什么?(老师边说边表演)。 (1)、谁来说一说诗中都是有什么? 7、请小朋友看一段动画,想一想为什么说天上的云彩真有趣? (1)、谁知道为什么说天上的云彩真有趣?(云彩能变成很多东西) (2)、云彩很有趣是风吹着它变的,那么风儿有本事是什么意思?(风儿有本领,又能耐能吹得云彩变成狮子、小白船、还有胖娃娃)

  • 中班语言课件教案:母鸡和苹果树

    中班语言课件教案:母鸡和苹果树

    2、能够仔细观察画面,根据图片提供的线索,大胆猜测和想象故事情节。 3、在猜测故事情节的过程中,体验观察和发现的乐趣。 活动准备 1、课件《母鸡和苹果树》。 2、自制一棵苹果树。 活动过程: 1、导入,激发幼儿兴趣。 师:看,画面上有什么?我们一起来看看房子里住的是谁。 师:哎呀,原来房子里住的是母鸡妈妈。 2、引导幼儿仔细观察画面,大胆猜测,学习主要角色间的对话。 (1) 师:一天早晨,母鸡醒来,推开窗户…… 咦,鸡妈妈怎么了,是什么表情?(幼儿回答) 师:母鸡妈妈瞪大了眼睛,好象看到了什么感觉很惊讶,那你猜猜看它看到了什么?(幼儿自由回答) 那母鸡妈妈到底看到了什么?(点击课件:苹果树) 母鸡说:“这棵苹果树哪儿来的呢?昨天还没有这棵树呢?” 那你们来猜猜看这棵苹果树是哪里来的呢? 那我们带着问题接着往下看。

  • 中班语言课件教案:和谁在一起

    中班语言课件教案:和谁在一起

    1)请幼儿在图中找出两两相互关联的事物,用笔把他们连在一起,并说明为什么这样做。教师引导幼儿说出“××与××有联系,因为、、、、、、”(如:蜜蜂与花朵有联系,因为蜜蜂能在花朵上采花蜜。)进一步尝试:玩法(2)教师出示一件实物或图片,请幼儿观察并讲述他与什么事物有联系,为什么。(如:国旗与国家有联系,国旗是国家的象征)玩法

  • 中班社会:三个和尚课件教案

    中班社会:三个和尚课件教案

    活动目标: 1、尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 2、感受到齐心协力能更好地做好一件事。 活动重点:尝试在故事情景中大胆、清楚地表述自己的想法,提高观察、分析问题及解决问题的能力。 活动难点:感受到齐心协力能更好地做好一件事。 活动准备:1、孩子们已经有了一些和尚的衣食住行方面的知识经验。 2、丰富幼儿看图说话的经验。 3、会唱歌曲《三个和尚》。 4、《三个和尚》故事片、课件、磁带。

上一页123...125126127128129130131132133134135136下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。