这种舞蹈就被称为塔兰泰拉舞。学生会根据这个小故事想象舞蹈应该有怎样的特点,动作剧烈、节奏急促、速度越来越快等等.这些特点让他们自己总结出来会比教师生硬的讲解更容易被接受(四)、再次聆听乐曲的第二部分,感受塔兰泰拉舞曲风格特点初步了解塔兰泰拉舞曲后再让他们聆听乐曲的第二部分,想象一下芭蕾舞演员随着这样的音乐会做怎样的动作.再完整欣赏这段《天鹅湖》第三幕中意大利女郎所跳的舞蹈视频,引导学生关注舞蹈动作的特点,加深对塔兰泰拉舞曲风格的感受.(五)、拓展延伸为了开阔学生的视野、对教材进一步拓展,完整欣赏后结合《天鹅湖》简介芭蕾舞的特征,并由它的起源引出意大利相关的音乐文化-----小提琴的制作工艺及价值等,使学生初步了解意大利音乐文化对欧洲艺术发展的影响。最后,在小提琴版《那不勒斯舞曲》的伴随下,幻灯播放意大利那不勒斯的美丽风光结束本课教学.
四、课外拓展让学生欣赏1987年的除夕夜,中央电视台的春节晚会舞台上,男高音歌唱家李双江出场,演唱了这首老歌《我爱五指山,我爱万泉河》,歌声一如既往地热情奔放,音质辉煌而华丽,当年正是他用这金色的嗓音唱红了这首歌,让“五指山的红岩石”、“万泉河的千重浪”被全国人民熟悉。以上所述只是我对本课的一种预设,很多环节可能还需要不断的改进,在实际教学中可能还有各种问题产生,我会根据实际情况及时引导和调整。放歌曲片段,提出问题,这首歌曲的演唱形式是什么?通过聆听,学生能轻而易举地说出是这首歌曲是一个人在演唱。是啊,像这样由一个人在演唱,常用乐器或乐队在伴奏的这样的演唱形式,我们把它叫做独唱----引出独唱,感受独唱在此歌曲中的作用,透过独唱,让学生了解其它声乐演唱的形式。
师:同学们那就让我们一起学习这首来自18世纪的歌曲吧!师弹琴、学生填词师:大家学唱了《我们大家跳起来》这首歌,你们觉得哪里最不好唱?(1)指导学习难点:第二、四乐句(2)跟琴划拍子演唱。(3)完整的划拍子演唱。师:歌曲学完了,让我们也来开一个宫廷舞会好吗?师:那么请同学们(同桌)参照课本上给的插图来创编这支舞蹈,记住,舞蹈要高雅端庄。6.创造与表现师:舞会马上要开始了,参加舞蹈的同学们准备好了吗?(1)创编学生分组随乐自编动作。(2)展示每组派两名代表表演自己创编的动作。(3)评价学生互相评价,老师作指导性评价。(4)集体表演师生自由选择角色,全班集体表演。7.课堂小结师:同学们,这节课你有哪些收获?(学生说说)大家的收获真不少,谢谢大家与我度过了一节难忘的音乐课。最后让我们一起来跳一曲小步舞,尽情享受这美妙的音乐吧!
(二)揭示课题初听歌曲1、导入:看,这是生活中小溪流水的样子,今天我们学唱一首歌曲叫——《小溪流水响叮咚》,请你们听一听音乐所描绘的小溪带给你怎样的感受吧!(揭示课题)(播放视频)2、提问:音乐有什么特点?描绘了怎样的风景?(出示歌词)3、再次聆听音乐,熟悉歌曲内容,找出附点四分音符和切分音节奏的乐句。揭示学唱内容,通过聆听,初步感受音乐的基本情绪,继续解决节奏难点。(三)学唱歌曲1、听范唱,学生在书上找找有没有我们刚才听唱的旋律?2、跟琴唱旋律,边唱旋律边体验音乐的速度、节奏以及起伏。3、朗读歌词。4、演唱歌词,理解歌词情感。5、通过反复演唱重点乐句,体会音乐形象。6、完整演唱7、选用打击乐器为歌曲伴奏。(四)小结大自然中美好的事物很多很多,只要我们善于去观察,去发现,相信你会有更多的收获,就让我们从现在开始,每天快乐的生活,欣赏,享受大自然与生活赋予我们的美好世 界吧!(听音乐出教室)。
(这部分音乐重复了第几部分的音乐?这部分音乐再次出现,让你有何感受?(学生即兴说,畅所欲言、发表见解与感受)结尾是什么样的效果?(情绪更加热烈,在欢乐的手鼓声中结束全曲)。六、完整欣赏整首乐曲。教师不做任何要求,学生用自己喜欢的方式、带着自己的见解去欣赏乐曲。(总结,如乐曲分成三个部分,以豪放的笔资、艳丽的色彩、粗犷的风格描绘了一幅新疆人民载歌载舞的欢庆场面。)七、拓展1、欣赏原苏联指挥家迪利济耶夫改编的管弦乐《新疆舞曲第二号》。2、谈一谈和钢琴曲对比,有何不同的感受?(在对不同表现形式的对比中,提高音乐的欣赏能力对比欣赏后,鼓励学生谈感受,更利于今后主动欣赏音乐。)八、布置作业搜集作曲家丁德善其他作品。板书设计:欣赏《新疆舞曲第二号》
4,表演歌曲 (1)老师带领学生随乐表演唱。 (2)“同学们的歌声真美妙,动作也很优美!老师从你们欢快的歌声和绽开的笑脸中感受到了同学之间团结和纯真的友情。大家能不能开动脑筋,和你的小伙伴团结合作,用歌唱,舞蹈,情景表演,绘画等方式把我们歌曲的意境表现得更美好,更生动? (3)小组讨论,教师巡视指导。 (4)各小组展示表演,学生互评,及时给予表扬。 “你们的歌声悦耳动听,舞蹈欢快活泼,表演情真意切,画也非常漂亮,无论是哪种表现形式,都把同学之间的团结友爱表现得淋漓尽致!大家真是多才多艺。 (三)、课堂小结 今天,老师和同学们一起渡过了愉快的一节课。在这一节课中我们学会了歌曲《一把雨伞圆溜溜》,连较难的休止、附点、切分节奏也唱得很准确;不仅如此,欢快,活泼的情绪感染了我们每一个人,强弱起伏的旋律把歌儿唱得更加生动优美;更重要的是大家在团结合作中成功地把歌曲的意境表现了出来,更真切的体会到了团结的力量和纯真的友情。希望大家在学习、生活中也能像歌里的孩子一样团结友爱,互相帮助。
《音乐课程标准》中指出音乐学习的各个方面都涉及到听觉的作用,审美主体对于音乐的各种听觉感受能力,是审美能力的基础。因此先唱歌、后识谱与先识谱、后唱歌在教学目的上并不矛盾。而在传统的教学方式是先识谱、后唱歌,通常情况下,针对有一定识谱能力的学生,使用这种教学方式,可起到良好的效果。但是我却发现,其实很多同学对简谱并没有了解,如果采取先识谱后唱歌的方式进行学习,不但学生没有对该曲目起到兴趣,也把课堂前15分钟的宝贵时间也白白浪费掉。对此我作出以下的改善,在教唱新歌前我首先让学生聆听,以听领先。并让学生和着音乐做简单的律动,使学生对音乐有了听觉上的印象,为下一步学好歌曲作好铺垫。然后让学生欣赏歌曲、感受音乐,从而激发起学生学习音乐的兴趣。再通过让学生唱歌,在不知不觉中解决了歌谱中的难点,使学生在识谱时降低难度,让学生感觉识谱并不太难,从而增强其自信心,加深对音乐的热爱。
二是提速高技能人才培养。推进XX艺才高级技工学校打造我区首个技师学院,推动建立X个新职业培训示范基地、X个技能大师工作室、X个“巴渝工匠”乡村驿站,新增X家以上企业自主评价机构,提升技能人才培养层次。力争到2024年底,全区技能人才总量达到XX万人,高技能人才总量达到XX万人。三是优化人才招聘选拔机制。有序实施全区部门下属事业单位年度招聘工作,开展教育、卫生事业单位赴高校招聘应届优秀大学毕业生,规范开展基层医疗卫生机构考核招聘,进一步做好评比达标表彰工作和创建示范活动,充分发挥表彰激励作用。四是健全联系服务专家制度。坚持把搭建事业平台、发挥专家作用作为联系服务的重点,为专家创新创业提供良好条件,组织开展区内专家休假、疗养、学术交流“三位一体”活动,探索“学养结合”服务模式,打造各领域高层次人才交流互动平台。
1 . 品味文章重点词语、句子或段落。 指导学生找出自己认为精彩、重要的词语、句子和段落,然后用旁批写下自己的看法。 词语例:“我们已经点开船,在桥石上一磕,退后几尺,即又上前出了桥。于是架起两支橹,一支两人,一里一换,……”“点”“磕”“退”“上”“架”等几个动词,将少年们开船时的动作程序以及合作划船的情状表述得颇为详细,显示了他们熟练的驾船技巧和勤劳肯干的品格,也折射出他们去看戏时的愉快心情。 句子例:“那航船,就像一条大白鱼背着一群孩子在浪花里蹿,连夜渔的几个老渔父,也停了艇子看着喝采起来。”这一句用一个富有童话色彩的比喻,反映了儿童富于幻想的 特点和愉快的心情。写老渔父的喝彩,是通过旁观者的赞美来衬托孩子们的驾船技术。 段落例:月夜行船一段(第11段)的景物描写分别从色彩、声音、视觉、听觉、嗅 觉各个侧面着笔,恰如多重奏管弦曲,给人以十分丰富的感觉,景物的立体感由此产生。
许慎的《说文》中讲:“亭,亭也,人所停集也。凡驿亭、邮亭、园亭,并取此义为名。”亭的历史十分悠久,一直可以上溯到商周以前。但是亭字的出现,却相对较晚,大致始于春秋战国前后。甲骨文,金文中均未见有亭字,现在发现的最早的亭字,是先秦时期的古陶文和古玺文。因此,在秦以前,亭的基本形制或许并不是十分成熟,但是到秦汉时,亭已经十分普遍了,是一种有着多种用途,实用性很强的建筑。
南乡子·登京口北固亭有怀辛弃疾何处望神州?满眼风光北固楼。千古兴亡多少事?悠悠。不尽长江滚滚流。年少万兜鍪,坐断东南战未休。天下英雄谁敌手?曹刘。生子当如孙仲谋。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。