教学过程:1、在《音乐之声》的歌声中走进教室,初步体会歌曲中对于音乐的赞美之情。2、教师简介《音乐之声》这部电影的内容,播放课件,配合视频和音乐让学生了解电影的时代背景和故事情节,图像、声音、内容合为一体,给学生最直观的感受,为下面欣赏歌曲做好铺垫。3、介绍并欣赏主题曲《音乐之声》创作背景及相关内容,让学生进一步了解歌曲的内容和情感风格。4、播放《音乐之声》在影片中的片段,欣赏原汁原味的电影歌曲,体会歌曲情感,分析歌曲内容,感受四四拍的节奏,让学生说出欣赏感受,并再次欣赏《音乐之声》,鼓励学生跟着哼唱。提示学生注意演唱形式的变换。5、思考歌曲的演唱形式,介绍独唱、齐唱,比较合唱与重唱的异同,并提醒学生注意在演唱二声部时第一要注意唱准自己声部的旋律,二要相互配合,和谐统一。6、欣赏影片中的其他插曲《Do Re Mi》和《孤独的牧羊人》,分别播放从电影中剪辑下来的视频,体会不同的音乐风格与乐趣。说出两首歌曲带给我们的感受(《哆来咪》欢乐有趣,《孤独的牧羊人》诙谐幽默)。引导学生思考音乐在电影中的重要作用:烘托情感,渲染气氛,让感情发挥的淋漓尽致,让电影得到更完美的诠释。7、小结及作业:适当的时间自己欣赏《音乐之声》这部影片,完整体会影片和歌曲的魅力。
教学重难点教学重点:进一步感受欣赏新疆音乐。教学难点:掌握新疆音乐的特点。教学准备 计算机、教学光盘、音响。教学过程1、导入 师:同学们除了以前我们学的几首新疆歌曲你还知道哪些呢? 生回答 师:今天我们就来再欣赏一首新疆歌曲。2、欣赏《乌夏克木卡姆》(选段)。(1)初听。完整欣赏。(2)复听。使用哪些乐器?整个乐曲可分为几部分?每部分的音乐情绪是怎样的?慢板与快板部分,在音乐情绪上不同?在音乐风格上与汉族音乐不同?探索中应从节奏、旋律、音色、调式、速度、力度、表演形式等要素上找根据。 (3)再听。 课堂总结 今天我们听了《乌夏克木卡姆》其中一个选段,我们要学会从中找到与我们平时所听的汉族歌曲的异同之处。好了,现在下课。
教学过程一、边欣赏音乐边介绍汤加。通过背景音乐和文字说明,使同学们掌握一些有关汤加的文化。二、初步了解拉卡拉卡“拉卡拉卡” 通常被视为汤加的国家舞蹈,它实际上是舞蹈、讲演、声乐和复调音乐、作曲、当地传说和历史故事的混合体。这一文化表现形式生机勃勃,在王国的所有族群中流行。遇有重要庆典活动,如国王加冕典礼或庆祝宪法周年等,“拉卡拉卡”是一台重头戏。三、讲述《拉卡拉卡》的音乐内容“拉卡拉卡”在汤加语中的意思是“快速而又谨慎的舞步”,源自一种被称之为“米娄弗拉”的舞蹈。该舞蹈出现于19世纪,20世纪在王室的大力支持下又得以复兴。演出一般持续30分钟左右,可汇集几百人的队伍,通常排成两行,右边为男性,左边为女性(从观众席看)。男性的舞步节奏明快有力,而女士们则舞步优美、动作飘逸。两队舞蹈演员边跳、边唱、边拍手,通常会有一支合唱队伴唱。密集的复调声部伴随着几百个舞蹈演员的摇荡舞姿,组成了激动人心的场面。四、完整欣赏《拉卡拉卡》说明:学生在完整欣赏乐曲时能够巩固乐曲主题的记忆,并且听辨、感受乐曲两个不同主题情绪,培养学生独立的音乐感受和见解。五、回答问题以及小组探讨问题说明:拓展质疑,激起学生的探究欲望。
《万马奔腾》是人音版六年级第二单元《草原牧歌》中的一首欣赏曲目,是一首由蒙古族演奏家齐·宝力高创作的一首马头琴独奏曲。齐? 宝力高——马头琴演奏家。蒙古族人,出生于内蒙古自治区的科尔沁,现任内蒙古歌舞团独奏演员。其演奏曲目有《草原连着北京》、《万马奔腾》等。 针对这首乐曲,作者曾讲过一个故事:在一次赛马活动中,作者看到一匹烈马背负着它的主人飞驰向前。这匹马以最快的速度、竭尽全力冲向终点。当他们冲过终点的时候,这匹马突然倒地而死。马的主人抱着它的头痛哭不止。这件事深深地触动着作者。他忘不了这匹马那种奔腾不息、死而后已的精神。出于对大草原的热爱、对马的热爱,作者写了《万马奔腾》这首乐曲。至于作者有没有弦外之音,他自己没有叙说。不过,我们完全有理由展开更广泛的想象。 齐·宝力高 (1944~) 马头琴演奏家。蒙古族人,出生于内蒙古自治区的科 尔沁,现任内蒙古歌舞团独奏演员。其演奏曲目有《草原连着北京》、《万马奔腾》等。1、情感态度与价值观目标聆听《万马奔腾》,感受体验蒙古族歌曲的风格;知道蒙古族是祖国大家庭的重要成员。乐于主动了解蒙古族文化,喜欢蒙古族音乐。2、知识与技能目标能够辨别马头琴和二胡的音色。对比欣赏二胡曲《赛马》和马头琴曲《万马奔腾》。了解乐曲的相关知识和文化。3、过程与方法目标聆听时,用自己喜欢的方式记录和表现印象,培养学生鉴赏能力。创编舞蹈动作表演《万马奔腾》。
教学过程:1、导入:(课前音乐:课堂里回荡着悠扬的歌声《小路》,学生在歌声中走进课堂。课前酝酿“乡间小路”的气氛。)(1)提问导入:同学们,你们了解校园民谣吗?你们听过的校园民谣有哪些呢?大家说了这么多,老师忍不住也想唱了,请同学们一起来和老师感受一下吧。师和音乐伴奏范唱《乡间的小路》。2、提问:你听到了什么,感受到了什么?能有感情的朗读出来吗?在萨克斯《归家》音乐声中有感情的朗诵《乡间的小路》,体会歌曲意境。歌词里所描写的景色多么迷人啊!你看“乡间的小路、暮归的老牛、蓝天、夕阳、云彩”,还有“牧童的歌声、笛声”,这一切都是那么的安详惬意,不管我们有多少的烦恼惆怅,只要走在乡间的小路上,它们都会随风飘散,消失得无影无踪。这么优美如诗、风光如画的歌曲,让我们再聆听一遍,请大家一边视听一边思考:歌曲可以分为几个部分?每个部分给你的情绪感受都是一样的吗?播放歌曲视频。3、新课:(1)欣赏歌曲《乡间的小路》,边听边用脚轻踩拍子,注意重拍。 a、歌曲所表现的内容是什么?情绪如何? b、歌曲的重拍在哪?是几拍子?(第二遍聆听)
教学过程一、导入教师:同学们,今天老师要带领大家到东北地区,去欣赏东北民歌。二、新课教学1、教师:关东支脉音乐的体裁形式和风格特点与齐鲁燕赵支脉有许多相同之处,但又形成了自身的特点。接下来我们通过几首有代表性的作品来找出关东支脉音乐的风格特点。2、教师播放《月牙儿五更》,请学生思考这首歌曲属于音乐民歌中的哪一种。学生回答回忆上节的知识。3、教师:大家能不能说出这首《月牙儿五更》是由什么乐器演奏的呢?学生回答。教师:板胡是我国弓弦乐器。音箱不是蒙以皮革,而是盖上薄的木板或椰壳,形似碗状,琴干琴弓比二胡粗;音色高亢嘹亮。下面我们来听两段音乐,请大家分辨一下是二胡的音色还是板胡的音色。学生回答。4、教师:下面,老师给大家介绍一位男高音歌唱家郭颂,郭颂演唱了很多优秀的民歌,我们来欣赏一首由他演唱的《月牙儿五更》。学生欣赏乐曲教师:由此我们可以看出很多器乐作品都源于优秀的民歌,民歌是我们源于创作的源泉。让学生了解民歌是音乐创作的源泉。三、课堂小结教师:同学们,今天这节课我们欣赏了关东支脉地区的音乐,我们了解了它的风格特点,也了解了很多的音乐创作都来源于民歌。希望在课下,同学们能够多去了解欣赏民歌,让民歌的灿烂文化一直发扬光大。
教学目标1、知识目标:掌握等式的性质;会运用等式的性质解简单的一元一次方程。2、能力目标:通过观察、探究、归纳、应用,培养学生观察、分析、综合、抽象能力,获取学习数学的方法。3、情感目标:通过学生间的交流与合作,培养学生积极愉悦地参与数学学习活动的意识和情感,敢于面对数学活动中的困难,获得成功的体验,体会解决问题中与他人合作的重要性。教学重点与难点重点:理解和应用等式的性质。难点:应用等式的性质,把简单的一元一次方程化为“x=a”的形式。教学时数 2课时(本节课是第一课时)教学方法 多媒体教学教学过程(一) 创设情境,复习导入。上课开始,给出思考,(算一算,试一试)能否用估算法求出下列方程的解:(学生不用笔算,只能估算)
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.
【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图 当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
解析:∵ab>0,根据“两数相除,同号得正”可知,a、b同号,又∵a+b<0,∴可以判断a、b均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计可以采用课本的引例作为探究除法法则的过程.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.并讲清楚除法的两种运算方法:(1)在除式的项和数字不复杂的情况下直接运用除法法则求解.(2)在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.
方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
解:由题意得a+b=0,cd=1,|m|=6,m=±6;∴(1)当m=6时,原式=06-1+6=5;(2)当m=-6时,原式=0-6-1+6=5.故a+bm-cd+|m|的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的应用性问题小红家春天粉刷房间,雇用了5个工人,干了3天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工100元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择哪种方案付钱最合算(最省)?解析:根据有理数的乘法的意义列式计算.解:第一种方案的工钱为100×3×5=1500(元);第二种方案的工钱为4800×30%=1440(元);第三种方案的工钱为150×12=1800(元).答:选择方案二付钱最合算(最省).方法总结:解此题的关键是根据题意列出算式,计算出结果,比较得出最省的付钱方案.
1.掌握有理数混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.在运算过程中能合理地应用运算律简化运算.一、情境导入在学完有理数的混合运算后,老师为了检验同学们的学习效果,出了下面这道题:计算-32+(-6)÷12×(-4).小明和小颖很快给出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小颖:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判断出谁的计算正确吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.
分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的 , 和 。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律? (2)逆用分配律 第42页 5、用简便方法计算(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。