尊敬的老师、亲爱的同学们:大家上午好!鲜艳的五星红旗伴着雄壮的义勇军进行曲,在我们眼前冉冉升起,这预示着又一个充满希望的新学年开始了。借此机会,我代表学校向全体师生致以亲切的问候和美好的祝愿!同时,我更要代表全校师生,对前来就读的高一新生致以热烈的欢迎和诚挚的祝贺:你们有主见,不人云亦云;你们重事实,不随波逐流,你们比你们那些去外地就读的同学多了一些理性和成熟。同学们,今年xx一中的高考成绩就是对你们的选择做出的最有力的回答。同样的入学成绩,我们这里的高三毕业生超出了去外地就读的同学成绩,同样的升学考试,我们这里的升学比例超出了所说的名校,很多的“同样”却出现了很多的“不一样”。高三学生的笑脸可以印证,高三学生的通知书可以印证,高三学生家长的感激可以----印----证。
2、文明礼貌用语我知道。学生二:“三文明”教育活动已经轰轰烈烈的展开了。在学习三文明教材中,我们有一项特殊的作业——收集文明礼貌用语,现在我们就八仙过海,各显神通,看谁语言美。(开火车)学生发言。学生一:听同学们的发言,我已经感受到了我们的语言的确很美,希望在以后的生活中,我们能经常用优美的语言与人交流。3、读书笔记展览。学生二:“文明”教育活动已经渗透到每个同学的心里,我们班同学写了读书笔记。请按顺序依次参观。4、文明手抄报展览。5、为获奖同学颁发奖状。(自制奖状)学生一:我们学了那么多,最终目的就是让我们“说文明话,行文明举,做文明人”。请欣赏〈文明礼仪歌谣〉
这篇《国旗下的讲话稿:带着梦想高飞》,是特地,希望对大家有所帮助!有一个石头在深山里寂寞的躺了很久,他有一个梦想,心里坚定一个信念;有一天能像鸟儿一样飞翔,当他把这个信念告诉同伴时,随即引来的却是同伴们的嘲笑‘瞅瞅,什么叫做异想天开,’‘这就是啊’‘太不知道天高地厚了’‘你做梦去吧’这并未打消石头高飞的决心,他一直在等待时机,直到有一天,一只大鹏鸟从他头上飞过,他呼唤大鹏鸟,把自己的梦寐以求的愿望告诉了大鹏鸟,希望大鹏鸟能帮他实现,大鹏鸟答应了,便用自己的坚硬的翅膀击山,一时间天摇地动,一声巨响后,山炸开了,石头飞向高空,就在飞的那一刹那,石头会意的笑了,但是不久后,他又从空中摔了下来,仍旧变成当初的摸样,落在起初的地方,大鹏鸟问;‘你后悔吗。’‘不,我不后悔,我已经经历了我的同伴所未体验的事情。’石头说。是啊,因为有信念,石头实现了自己的异想天开的梦想,而在我们的生活中,人人有理想,人人都想要成功,但结果是千差万别的,有的人坚定信念成功了,有的人缺乏信念迷失了前进的道路,有的人甚至因为磨难的打击而永远跌倒在征途中,生活中有跟多路、很多暗夜,我们不得不自己去面对、自己去承担,我们始终要离开父母的避风港而扬帆出海的,要经历的风浪,只等我们自己扛,别人无法替代,也无法替我们承受磨难的打击,那么,我们必须学会自己去体验,心里怀着一份信念、去闯荡。
课时分配 建议本课依据学情分课时。第一课时进行自主学习反馈及文意梳理、整体感知。第二课时进行课文具体分析的交流展示及当堂检测。可适当调节。教学目标 知识与技能 1.掌握文章中的一些重点词语的含义,积累一些文言知识。2.结合课后注释,疏通文章意思,逐步提高文言文的朗读和疏通能力。过程与方法 1.通过不同形式的朗读,理解短文所阐明的深刻道理。2.通过合作探究的学习方式,引导学生体会文章语言的精妙。情感、态度与价值观 注重对学生的情感熏陶,让学生认识封建统治者不识人才、埋没人才的昏庸,引导学生认识到在今天的优越条件下,要努力使自己成为有用之才。
2、学习自制传话筒,提高动手能力。 【活动准备】 各种声音的录音;铃鼓、锣、三角铁、尺子、皮筋、塑料袋、筷子、吉他等;纸杯、棉线、透明胶带。 【活动过程】 1、播放各种声音的录音,引起幼儿的兴趣。 提问:“你听到了什么?” 2、引导幼儿尝试用各种方法使物体发出声音。 (1)提供各种物体,引导幼儿观察。 提问:“这些东西不动时,它能发出声音吗?”“你能用什么办法使它们发出声音呢?”
整个教育活动我设计了三个环节:第一个环节,谈话引入,拉近师生关系,激起幼儿认真听讲,大胆回答问题的信心。出示哭泣的青蛙,引起幼儿学习兴趣,第二个环节借助图片讲故事,引导幼儿发现动物们各自的本领,帮助伤心难过的青蛙寻找优点,逐渐感知、体会故事中所蕴含的“我就是我,谁也代替不了”的道理。第三个环节,鼓励幼儿大胆在别人面前讲述自己的本领,展现自己的本领,并引导幼儿发现自己身上不被关注的优点,为幼儿提供表现自己的长处的机会,增强自尊心和自信心,师生互动、生生互动,教师和孩子们的评价直接影响着幼儿的自我价值感,让每个孩子感受赞美和被赞美的快乐。从而大胆的告诉别人“我喜欢我自己”,让自己更加的自信!整个活动,给孩子们创造一个轻松、快乐的氛围,以提高孩子们与别人交流的自信心。更重要的是将自信培养教育渗透到幼儿生活当中,引导幼儿正确地认识自我,评价自我。活动中有不当之处,敬请各位评委和老师批评指正。
说教材 ①说教材所处的地位和作用 本节内容在全书和章节中的作用是:《__________》是__________版__________教材第__________册第__________章第__________节的内容。在此之前,学生已学习了__________基础,这为过渡到本节的学习起着铺垫作用。因此,本课题在中占据极其重要的地位, 本课题前面承接本教材的__________部分,后面是本教材的 __________ 部分,所以学好本课题为以后__________的学习打下了坚实的理论基础,在整个教材中起到了承上启下的作用。
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
各位老师,同学们:早上好!今天我演讲的题目是:心存一颗感恩的心。俗话说“谁言寸草心,报得三春晖”,“滴水之恩,当涌泉相报”。是的,知恩图报是中华民族的传统美德。同学们,我们要懂得感恩。如果你不会感恩,幸福就离你远远的;如果你会感恩,幸福就会常伴你左右。那么,我们应该感谢谁呢?首先,我们要感激父母,感谢他们给了我们生命,感谢他们搀扶我们走好每一步人生之路,为我们搭建快乐成长的舞台。接着,我们又该感谢谁呢?我们要感激老师,感激他们传授我们知识,让我们拥有智慧、拥有克服困难的力量和奋发图强的信心。当然,我们也要感激陪伴我们成长的朋友们。
扬起自信的风帆各位老师,同学们:大家早上好!今天我演讲的题目是《扬起自信的风帆》。自信,是走向成功的伴侣,是战胜困难的利剑,是达向理想彼岸的舟楫。有了它,就迈出了成功的第一步,有了它,就走上了义无反顾的追求路。曾几何时,刘邦、项羽目睹秦始皇浩浩荡荡的出游队伍、富丽华美的车帐、八面凛凛的威风,随生雄心万丈的自信:“大丈夫当如此也”,“彼可取而代也”。于是,汉高祖立千秋帝王大业,楚霸王成万古悲壮英雄。诗人李白自信,他发也了“天生我才必有用,千金散心还复来”、“仰天大笑出门去,我辈岂是蓬蒿人”的浩叹,便有壮丽辉煌的诗章千古流传。巴尔扎克自信,放弃家人为他选定的职业,毅然走上创作道路,终有惊天动地的《人间喜剧》彪炳千秋。一代伟人毛泽东更自信,他高唱“自信人生二百年,会当击水三千里”、“数风流人物,还看今朝”,万水千山,披荆斩棘,铸造了共和国的辉煌,带来了亿万人民的幸福-------
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
这篇《国旗下的讲话稿:做一个文明之人》,是特地,希望对大家有所帮助!尊敬的各位领导、老师们、亲爱的同学们:早上好!今天我讲话的题目是《做一个文明之人》。在这里先给大家讲两个事例:个事例:新加坡是个以英语为通用语言的国家,据说他们的公共场所的各种标语大多是用英语书写的。但其中的一些涉及文明礼貌的标语,如“不准随地吐痰”、“禁止吸烟”、“不准进入草坪”等却用中文书写。这是为什么呢?人家回答:因为有这些不文明行为的大数是中国大陆的游客。为此,到新加坡考察的一位中学校长语重心长地说:不文明行为也是国耻。第二个事例:据中央电视台报道,国庆节后的天安门广场,随处可见口香糖残迹,显得格外刺眼,40万平方米的天安门广场上竟有60万块口香糖残渣,有的地方不到一平方米的地面上竟有9块口香糖污渍,密密麻麻的斑痕与天安门广场的神圣和庄严形成了强烈的反差。
对于我们每个具体的人来说,“中国梦”的核心可以用三句话来概括即:实现自我,回馈社会,拥抱自然。无疑,这是一个人性化、可持续、符合中国价值观和文明特征的简洁公式。在追求个人自我实现的过程中,享受内心的平和,平衡,平静;在与社会的互动回馈中,找寻和谐,和睦,和顺的感觉和定位;在与自然环境的共生共存状态中,尊重自然,享受自然,保护自然。
演讲稿频道《国旗下的讲话演讲稿:祖国在我心中》,希望大家喜欢。尊敬的老师,亲爱的同学们:大家好!今天我要演讲的题目是:《祖国在我心中》。在爬满甲骨文的钟鼎上,读祖国童年的灵性;在布满烽火的长城上,读祖国青春的豪放;在缀满诗歌与科学的大地上,读祖国壮年的成熟。在河西走廊,华北平原,我看祖国的富饶与辽阔,看祖国千里马般日夜兼程的超越;在长江三角洲、珠江三角洲,我看祖国崇高与巍峨,看祖国繁荣的霓虹灯日夜闪烁,灿若银河;“祖国在我心中”,简简单单的六个字,道尽了多少中华儿女的心声。正是因为有这样一颗中国心,革命先烈抛头颅,洒热血,每一个炎黄子孙看到迎风飘扬的五星红旗都会热血沸腾,壮志激昂。古老的东方有一个全身珠光宝气,雍容华贵的女子。盘古开天辟地、四大发明、**孔子、丝绸瓷器、威武的兵马俑使她光彩照人。她的美让人羡慕万分。但是掀开摞摞发黄的历史,我们看到的又是怎样的一幕呢?时间的指针急速倒转,指向了1840年。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。