二、形式多样,体验讲文明之感受1.用儿歌引出校园文明的表现。主持甲:首先,让我们欣赏校园童谣。齐声朗读《拍手歌》(配乐,四对同学上台表演)2.看小品《问路》,引出礼貌用语。主持乙:讲文明的孩子人人爱,但是如果不会使用文明礼貌用语,就有可能办不成事情。不信你们看!旁白人:(配乐)小熊皮皮和小兔贝贝是一对好朋友。他们都是动物学校一年级的小学生。贝贝特别逗人喜爱,可皮皮呢?是个小调皮鬼,经常闹些小笑话。这不,说着,说着,他们就来了……(三名学生分别扮演“小熊”“小兔”“小羊”,小品《问路》的情节):旁白:今天天气特别好,太阳公公早早地从天边露出他那慈祥的笑脸(“小熊”“小兔”上);小鸟儿在枝头叽叽喳喳唱得多欢,小熊皮皮和小兔贝贝今儿个可起了个大早,他俩手牵手蹦蹦跳跳往森林深处走去。原来今天动物王国将举办一年一度的演唱盛会。皮皮和贝贝可是二重唱的小演员,瞧把他俩给乐的!可走着,走着,他俩却迷路了——
3.当你遇到火灾时如何逃生?(学生答后,主持人总结如下)(1)火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去,但千万不要披塑料雨衣。(2)如遇到身上着火,可就地打滚,或用厚重衣物覆盖压灭火苗;如遇到在浓烟中避难逃生,要尽量放低身体,并用湿毛巾捂住嘴鼻。(3)大火封门无路逃生时,可用浸湿的被褥衣物等堵塞门缝,泼水降温,呼救求援;火灾袭来时,身处楼上的人员应判清火情,保持镇静,不可盲目跳楼,可用绳子或把床单撕成条状连起来,紧拴在门窗框和重物上,顺势滑下。(4)当被大火围困又没有其他办法可自救时,可用手电筒、醒目物品不停地发出呼救信号,以便消防队及时发现,组织营救。
亲爱的同学们,尊敬的老师、家长朋友们:今天我们齐聚一堂,隆重举行2023届高考冲刺誓师大会。看到我们学校毕业同学代表发来的视频,让我们看到了历经高考磨练的XX中学子阳光自信、青春绽放的新时代大学生的亮丽风采,真让人羡慕;听着同学们的家长送来的温情祝福,让我们体验到的是作为父母的嘘寒问暖、望子成龙、望女成凤的舐犊之情,真让人动容;聆听老师们的真情致辞和庄严承诺,让我们感受到的是敬业乐教、爱生奉献的师者情怀和潜心教学、筑梦高考的必胜信念,真是催人奋发;听着意气风发、激情澎湃的同学们从心底发出“高考成功、舍我其谁”的铮铮誓言,那是XX中学子凝聚而成的“奋勇鏖战、登顶高考”青春力量,真的令人无比振奋!亲爱的同学们,十二年寒窗苦读,厉兵秣马以摘冠;九十天拼搏鏖战,争分夺秒可争雄。今天,我们已经站在高考倒计时90天的时间起点上,用自信和拼搏奏响高考的最强音,已然成为了我们生活的主旋律。在这个关键的时间节点,在今天这样庄严而令人振奋的时刻,作为校长我要为同学们呐喊助威:你们都是高考勇士!你们都会收获高考成功!你们都是每个家庭和XX中学的骄傲!同时,作为师长,我也有心里话要跟同学们说:
四、劳动报酬第五条甲方的工资分配应遵循按劳分配原则。甲方每月日以货币形式足额支付乙方工资,工资元/月。第六条甲方安排乙方加班或延长工作时间甲方另行补助乙方。五、保险福利待遇第七条甲乙双方应按国家和市社会保险的有关规定交纳职工养老、失业和大病医疗统筹及其他社会保险费用。甲方应为乙方填写《职工养老保险手册》。双方解除、终止劳动合同,《职工养老保险手册》按有关规定转移。第八条乙方患病或非因工负伤,其病假工资、疾病救济费和医疗待遇按照国家有关规定执行。
乙方应当于劳动合同解除、终止、离职或者于甲方提出要求时,将其所持有或保管并记载着甲方公司商业秘密信息的载体返还给甲方,或将记录在乙方自备载体的甲方公司商业秘密信息转载至甲方提供的载体上并将自备载体的信息消除。
1、教师要在教学实践中把自己做为研究对象,研究反省、思考、探索和解决自己的教学理念、教学行为以及教学效果等问题,不断更新观念,努力成为“反思”型教师。 2、教师要增强反思意识。坚持教学前、集体备课中、教学中、教学后反思、听课后反思。 教学前反思,主备教师做科学合理的教学设计,重在教学预测,辅备教师对主备教案进行反思,重在调整完善教学设计; 在集体备课中针对主备教案进行调整和完善的内容进行研讨交流,达到优化教学设计的目的。 教学中反思,教学要考虑课堂教学过程中的每个细节,随时调整教学设计,重在随机应变;
二、坐班的任务:备课、学习、作业批改、听评课、其它有组织的教育教学活动。 三、坐班的时间:每周一至周五的上午预备前20分钟、下午预备前20分钟。 四、坐班的地点:各班教室。 五、坐班的考勤:坐班出勤以教学出勤登记执行,每天值日教师负责考勤。 六、坐班要求: 1、请坐班教师从教学需要、管理需要出发,克服个人或局部困难,认真坐班。
一.幼儿园教师必须遵守作息时间,不迟到.不早退.不旷工.无大事不得请假,一个月内允 许请假一天超过一天,注:请半天假 二.全勤的教职工每月发给全勤奖50元 ,有迟到.早退.旷工等现象无全勤奖,另外迟到. 早退者则在当月工资中扣除10元/次。 三.教师要把精力放在工作上,不带情绪进园,上班期间,不随意换班.替班.更不能串班 闲谈一切无关工作的事情,避免孩子发生意外,严格做到:视线绝对不能离开孩子,不允许 让孩子替教师做事,坚持正面教育,禁止任何形式的体罚或变相体罚,严禁打骂孩子。 四.孩子在园内发生责任事故有上述情况,有当班老师自己 负责,接送期间孩子在园内发生责任事故的,则有值班老师负责。 五.班中所有物品保管好,如有变动.丢失或损坏等及时报告,如隐瞒不报造成后果有老 师负责,老师和孩子离开教室期间必须关掉所有电器,另外物品或工具不准随手乱放,用完 后必须放回原处。
1、教职工实行全员全日坐班制,上下班时间按学校作息时间表执行。 2、有早读的科任教师按时到位,早、午第一节没课的教师、中、下午最后一节没课的教师可以比作息时间晚到、早走30分钟。上班期间要离开岗位者必须向部门负责人说明去向。未经请假不来学校工作者,按旷工处理。 3、班主任和级组长,早读、课间操必须到场。 4、眼保健操由前一节上课的教师组织、督查,待学生顺利作完操后教师才可下课(包括转移教室上课的班级,只体育课除外)。 5、各处室行政人员上班期间因事外出,必须向校长办公室讲明去向,并安排好值班人员。 1、学校举行集体升旗仪式时(除特殊情况外),每位教职工必须按时参加,教师整队由校办公室主任负责,如因学校公事外出不能参加者,必须事先向校长办公室请假。
20xx.01-20xx.12 XXX幼儿园 岗位:幼儿老师 1、根据教育工作计划要求,制定教育工作目标、计划、并组织实施,做好教育笔记;2、指导和配合保育员管理好幼儿的生活和做好幼儿卫生保健工作;3、认真做好家长工作,定时和每个幼儿家长保持联系,了解幼儿家庭教育情况,和家长商议符合幼儿特点的教育措施,共同配合完成教育工作。20xx.01-20xx.12 XXX服务有限公司 岗位:早教幼师 1、负责2~12岁孩子的早期教育;2、关注孩子的动作、认知、语言的发展,设置个性化早教方案,引导幼儿养成自主好习惯;3、观察幼儿的学习状况,并做好观察记录,完成教学笔记和学期幼儿成长报告。
20xx.07-20xx.08 XXX软件有限公司 开发工程师工作描述: 开发android版蓝牙打印软件,控制蓝牙打印机(如斯普瑞特便携式打印机、tsc便携式打印机)按客户需求打印对应格式标签;在工作中主要负责协助项目组长以及该项目组的其他开发人员对产品新需求进行分析,对代码进行封装重构,提升性能;在工作中表现出来认真负责、不怕苦和累的品质,积极配合组长的工作安排,积极的与其他相关工作人员的沟通和交流,在开发新版本、维护旧版本的工作中,表现积极,赢得大家的认可和表扬。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。