二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
四、教学过程分析为有序、有效地进行教学,本节课我主要安排了以下教学环节:(一)复习导入主要复习一下三种统计图,为接下来介绍三种统计图的特点及根据实际问题选取适当的统计图做好知识准备。(二)问题探究选取课本上“小华对1992~2002年同学家中有无电视机及近一年来同学在家看电视的情况”的3个调查项目,进而设计3个探究问题从而加深学生对每一种统计图的进一步认识,至此用自己的语言总结出每一种统计图的特点。(三)实践练兵这一环节通过2个实际问题的设计,通过学生对问题的分析、讨论,使学生认识到适当选取统计图有助于帮助人们去更快速、更准确地获取信息。(四)课堂小结总结这一节课所学的重点知识,这部分主要是让学生自己去总结,看看这节课自己有哪些收获。(五)作业布置进一步巩固本节课所学的知识,达到教学效果。以上就是我对这节课的见解,不足之处还望批评和指正。
一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。
(2) 请你结合上述两幅漫画,对这一行为进行简要评析。15.某校七年级组织学生以“孝亲敬长”为主题开展手抄报评比活动。下面是某 同学手抄报的部分内容,请你阅读并参与完成相关问题。[我的感受]在人世间,最美的旅行是回家。无论走得多远,每个游子的心里也都有一个 归家的梦!回家的感觉真好!(1) 结合所学的知识,分析说明“回家真好”的原因是什么?[我的思考]调查显示:在当今家庭中,许多孩子不要父母过多干涉他们的学习和生活, 很多同龄人有被父母偷看过 QQ、微信聊天记录和日记的经历……(2) 针对调查显示的问题,你认为应怎样做才能处理好亲子之间的冲突?[我的鉴赏]人生最美好的事,莫过于我长大,你未老。我有能力报答,你仍然健康。父 母之爱,儿女即使用一辈子也是报答不完的。
本单元内容是部编版《道德与法治》七年级上册第三单元,单元标题是“师 长情谊”,依据《义务教育道德与法治课程标准 (2022 年版) 》,围绕核心素 养确定的课程目标要求如下:1、道德修养家庭美德,践行以尊老爱幼、男女平等、勤劳节俭、邻里互助为主要内容的 道德要求,做家庭好成员。培育学生的道德修养,有助于他们经历从感性体验到理性认知的过程,传承 中华民族传统美德,形成健全的道德认知和道德情感,发展良好的道德行为。 2、健全人格理性平和,开放包容,理性表达意见,能够换位思考,学会处理与家庭、他 人的关系。3、总目标学生能够了解个人生活和公共生活中基本的道德要求和行为规范,能够在日常生 活中践行尊老爱幼等的道德要求;形成初步的道德认知和判断,能够明辨是非善 恶;通过体验、认知和践行,形成良好的道德品质。具有理性平和的心态,能够 建立良好的师生关系和家庭关系。
作业二(一)、作业内容情境探究、互联网将地球缩成一张小小的“网”。在这张“网”里,我们可 以发布信息、浏览新闻、结交好友等,为我们的人际交往扩展了新通道。情境一 中学生小强在一个论坛上认识了小胡,他们在很多问题上看法一致, 很快成为无话不谈的好朋友。经常彻夜长谈兴趣爱好、闲聊家庭状况、相约打游 戏。 有一天,小胡邀请小强一起去参与网络赌博,小强犹豫了。(1)请运用《网上交友新时空》的相关内容,结合材料,谈一谈:对于这样的网 友,小强应该怎样做?情境二 小强拒绝小胡以后,开始找借口疏远小胡。小胡察觉后,开始“变脸” 邮寄各种恐吓信和物品到小强家。小强忍无可忍选择了报警。(2)小强的网络交往经历,给我们中学生参与网络交往哪些建议?
(四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,以培育学生课程核心素 养为目标,为了培养学生的基本道德修养和社会责任感,养成良好的行为习惯, 作业以劳动活动的方式呈现,特开展“帮助父母做家务”社会实践活动。教师通 过学生活动成果的展示,从“计划合理,联系实际;操作具体,善于思考;记录 完整,汇报详细;总结全面,反思深刻”等 4个维度对作业进行评价,以“优秀” “良好”“合格”三个等级呈现。通过家务实践活动让学生体验到父母工作的辛 苦和劳动的光荣,感谢父母对自己无微不至的关怀和照顾。让学生在接受爱的同 时学会关爱,学会付出、学会回报,懂得孝亲敬长。这种劳动实践的作业设计与 实施,有利于推进中小学劳动教育,落实劳动教育指导纲要,保障劳动教育时间,创新劳动教育载体,拓展劳动教育实践场所,推动劳动教育常态化有效开展,充 分发挥劳动教育综合育人作用。增强学生的责任意识,在实际生活中能自觉分担 家庭责任,具有较强的责任感。
第二框“师生交往”,主要帮助学生懂得“教学相长”的道理,强调师生之间上午双向互动,引导学生正确对待老师的引领和指导,全面认识师生交往的实质,努力建立和谐的师生关系,达到师生交往理想而美好的状态。第七课《亲情之爱》引导学生认识现代家庭的特点,培养学生在亲子之间积极沟通的能力和意识,学会表达爱,让家庭更美好成为一种发自内心的呼唤,与父母共创美好家庭。第一框“家的意味”,主要引导学生通过对我国传统文化“家训”“家规”的探究,了解中国家庭文化中“孝”的精神内涵,引导学生对家庭美德的深入思考,进而引导学生学会孝亲敬长。第二框“爱在家人间”,主要帮助学生认识到进入青春期的初中学生与家人之间产生冲突,既有自我独立意识增强与依赖心理之间的矛盾的原因,又有代际之间心智、学识、经历等方面的较大差异,掌握呵护亲情和解决冲突的方法。
作业 2:老师在与我们的交往中,扮演着组织者、倾听者、陪伴者的角色。作为学生,我 们要正确对待老师的表扬和批评。下列对此认识正确的是 ( )①老师的表扬意味着肯定、鼓励和期待②老师的表扬和批评能激励我们更好地学习和发展③老师的批评意味着关心、提醒和劝诫,可以帮助我们改进不足④对待老师的批评,我们要理解老师的良苦用心A.①②③ B.①③④ C.②③④ D.①②③④1.参考答案:D2.时间要求:2 分钟3.评价设计:本题学生错题的原因在于没有正确理解老师的批评和表扬。 4.作业分析与设计意图:本题考查如何正确看待老师的批评和表扬。(1) 老师的表扬意味着对我们的肯定、鼓励和期待;批评意味着老师对我们的关心、 提醒和劝诫,可以帮助我们改进不足,对待老师的批评,我们要理解老师的良苦用心。 (2) 老师的表扬和批评能激励我们更好地学习和发展,我们要正确地对待老师的表 扬和批评,被老师表扬不骄傲,受到批评也不气馁和抱怨,正视老师的教育,从而促 进良好师生关系的发展。
8.进入青春期后的我们,常常与父母对着干,他们越是让 我们干什么,我们就越是不干什么,对此我们不合理的做法是 ( )A.创造机会,多与父母交流、沟通B.与父母意见不合时,要注意调控自己的情绪 C.理解父母的苦心,爱父母,关心父母D.孝顺父母,与父母观点不同的事情不做9.当今社会,很多孩子在家不做家务,说到原因,大部分 家长认为孩子比较小,不适合做家务;还有一部分家长认为孩 子学习时间紧张,不做家务可以节省时间用来学习。下列观点 与材料内容相符的是 ( )A.有利于培养孩子的劳动习惯B.有利于营造良好的家庭氛围C.有利于提高孩子的自立能力D.不利于增强孩子的家庭责任意识10.我国民法典规定,“缺乏劳动能力或者生活困难的父母,有要求成年子女给付赡养费的权利” 。这说明了 ( )A.孝亲敬长是某些人必须做到的B.孝亲敬长是每个中国公民的法定义务C.孝敬不能只停留在口头,要落实到行动中D.我们理应回报父母
2.内容内在逻辑本单元包括两课。 第六课设计了“走近老师”和“师生交往”两框内容。第一框通过 了解不同时期的老师,让学生从多层面、多角度认识老师这一职业群体;结合学生学 习实际,发现风格不同的老师,进一步引导学生学会接纳、尊重不同风格的老师,继 而建立对老师应有的正确“印象”;构建与老师良好交往的逻辑起点。第二框通过帮 助学生正确对待老师的引领与指导、表扬与批评以及与老师的矛盾与冲突,使学生认 识到亦师亦友的师生关系是师生交往的理想状态;并以实际行动与老师共建良好师生 关系,共度教育好时光。第七课设计了“家的意味” 、“爱在家人间”和“让家更美好”三框内容。第一框通过 引导学生联系已有的生活经验认识“家”是什么,结合对“家”及有关优秀的传统文化 进行探讨与分享,认识中国人的“家”是怎样的;在对“家”基本认知的前提下,第二 框进一步引导学生理解家的最本质内涵是“爱” ,并以实际行动去呵护“爱”;在对 “家”和“爱”的认知基础上,第三框进一步引导学生学会与家庭成员友好相处,从 而构建和谐的家庭关系,让家更美好。
一、单项选择题1.“一支粉笔两袖清风,三尺讲台四季晴雨;十卷诗赋九章勾股,八索文思七纬 地理。”这幅对联歌颂的对象是 ( )A.科学家 B.教师 C.医生 D.警察2.建校 12 年,云南丽江华坪女高 1000 多名女生走出大山上大学。她以怒放的生 命,向世界表达倔强,她就是崖畔桂雪中的梅。她就是 2020 年度感动中国人物 ——张桂梅。她之所以让我们感动,是因为她 ( )①有理想信念 ②有仁爱之心③有道德情操 ④有较高学历A.①②③ B.①②④C.①③④ D.②③④ 3.初中生丽丽觉得初中数学老师上课没有小学数学老师幽默,导致他现在对数学 不感兴趣,成绩直线下降。针对丽丽的的情况,同学们纷纷给出建议,你赞同的 是 ( )A.让老师改变教学风格B.要求调换一位教学风格幽默的老师C.每位老师风格不同,我们应尊重老师的“不同”
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。