老师、同学们:同学们,今日的习惯,决定明天的你们。因此,在今天的学习生活中,同学们一定要养成一些好的习惯,比如:习惯于主动打扫卫生,形成热爱劳动的习惯;习惯于说声“谢谢”、“你好”、“对不起”,形成以礼待人的好习惯;习惯于每天坚持锻炼,形成健美的体魄;同学交往中习惯于理解、宽容,便能化干戈为玉帛;习惯于去用心观察,才能形成好的观察能力;习惯于提前预习,课后复习,才能形成高效的学习方法……法国学者培根说过,“习惯是人生的主宰,人们应该努力追求好习惯。”是的,行为习惯就像我们身上的指南针,指引着我们的行动。爱因斯坦有句名言,“一个人取得的成绩往往取决于性格上的伟大。”而构成性格的,正是日常生活中的一个个好习惯。好习惯养成得越多,个人的能力就越强。养成好的习惯,就如同为梦想插上了翅膀,它将为人生的成功打下坚定的基石。小时候的 鲁迅 先生,就养成了不迟到的习惯,他要求自己抓紧时间,时刻叮嘱自己凡事都要早做。这位以“小跑走完一生”的作家,在中国文学史上留下了辉煌的业绩。可见,行为习惯对一个人各方面的素质起了决定性的作用。
篇一尊敬的老师、亲爱的同学们:大家早上好。春回大地煦风暖,XX年,当春天的阳光再一次普照在西南科大文艺学院这片热土时,我们憧憬万分,我们心潮澎湃。前几日冬奥会顺利闭幕,中国获第七名的成绩,这是中国在冬奥会的历史突破,一霎那我们就感觉到身为年轻一代,我们肩负着任重道远的历史使命和社会责任。新学期开始,我们更要以全新的状态类迎接新一轮的挑战。各位同学们,西南科技大学文艺学院是一片沃土,提供给我们成长的条件,西南科大文艺学院也是值得我们骄傲的舞台,给我们展示才华的机会。文艺学院又是一片大海,让我们扬帆远航。莎士比亚说:“上天生下我们,是要把我们当做火,不是照亮自己,而是普照世界。”作为西南科大的学生,我们应当在新学期争当五个方面的模范:做身体心理健康的模范,做思想道德高尚的模范,做掌握科学文化素养的模范,做有劳动技能的模范,做有艺术审美修养的模范。而这五种模范正是素质教育要求的五个综合素质。作为西南科技大学的学生就是应该有高要求,高素质。恩格斯讲过:“人生境界是有所作为”,那么时值新学期刚刚开学,各位同学应该重新审视自己的行为,看看自己做的怎么样,是否有自己的学习计划,是否完成了老师交给的任务,是否合理安排每天的学习生活,我们应该争做这5个模范。我们不会畏惧严峻学习任务的挑战,因为海涅曾说过:“严冬劫掠去的一切,新春会给你还来。”
各位老师、同学们:大家早上好!走过炎热的夏天,度过愉快的暑假,我们又满怀激动的心情迎来了新的学年。新的学年,我们迎来了23名新教师和1000余名七年级新生,他们的到来进一步壮大了我们的队伍,为学校的进一步发展提供了新鲜的血液和强大的动力,为此让我们以热烈的掌声对他们的到来表示热烈的欢迎!过去的一个学年,我们全校师生戮力同心,奋力拼搏,锐意进取,改革创新,在学校管理、教育教学、校园文化建设等方面取得了可喜的成绩,特别是我校利用暑期对教学区的楼宇进行了加固改造,改善了办学条件,让校园变得更美丽、更安全。这些成绩的取得,凝聚着每位教职员工的辛勤耕耘和无私奉献,汇聚着全体同学的勤奋好学和自强不息。在此,我代表学校向一学年来兢兢业业、努力工作、勤奋学习的老师和同学们表示衷心的感谢!老师们,因为有缘,我们相聚实中;因为有份,我们奉献实中。新的学年里,让我们自觉学习现代教育理论,积极投身教学改革,提高教学效率;继续发扬爱生敬业、甘于奉献的优良作风,静心教书,潜心育人,以纯洁的心灵塑造学生的灵魂,以健康的人格魅力带动学生的品格养成,营造我校和谐健康,洋溢着人文色彩的人际氛围,努力实践教育促进人的发展的崇高目标。
各位老师、亲爱的同学们:早上好!今天我国旗下讲话的主题是《爱国,从唱响国歌开始》。当我们每一次面对庄严的五星红旗,向国旗行注目礼,共同唱响国歌时,你是否心潮澎湃,是否热血沸腾。你的眼前是否出现了那一个个为了新中国,为了这个不愿做奴隶的伟大民族不再受屈辱而前仆后继、奋勇杀敌的烈士的身影,国旗记下了这一个又一个感人的瞬间,国歌讲述着在那片被血染红的天空下发生的动人故事。在漫漫历史长河中,千千万万的中华儿女深爱着自己的祖国,他们把个人的命运同祖国的命运紧紧联系在一起,把祖国的利益看得高于一切,甚至为祖国献出了自己宝贵的生命。也许有同学会说,现在是和平年代,并不需要我们去为国捐躯,爱国似乎对我们小学生来说很遥远。其实,我要说,爱国并不是说非要做出什么轰轰烈烈、惊天动地的大事。对我们每位小学生来说,爱国可以是具体的、细小的体现。小到每一次升旗仪式时的高唱国歌。当鲜艳的五星红旗在国歌声中冉冉升起的时候,你肃立的姿势、高举的小手、肃穆的表情、响亮的歌声就是爱国的最好体现。
一、导入新课成为一位科学家是无数有志青年的梦想,对物理的探究更是许多年轻的学子孜孜以求的,我们来看一下加来道雄的成长道路,或许能得到一些启发。(板书)一名物理学家的教育历程二、明确目标1.引导学生从生活出发,了解科学、认识科学2.引导学生以“教育历程”为重点,探讨其中表现的思想内涵。三、整体感知1.作者简介加来道雄,美籍日裔物理学家,毕业于美国哈佛大学,获加利福尼亚大学伯克利分校哲学博士学位,后任纽约市立大学城市学院理论物理学教授。主要著作有《超越爱因斯坦》(与特雷纳合著)《量子场论》《超弦导论》。2.本文的基本结构文章的题目是“一名物理学家的教育历程”,因此,叙述的顺序主要是历时性的。但是,作者开头就说“童年的两件趣事极大地丰富了我对世界的理解力,并且引导我走上成为一个理论物理学家的历程。”而“童年的两件趣事”作为文章的主要内容,又是共时性的叙述。这样的结构安排,使文章既脉络清楚,又重点突出。
尊敬的老师、亲爱的同学们:大家上午好!我是来自六年级四班的的董一诺。今天,我代表全体XX级毕业生,最后一次站在主席台上,感谢母校对我们六年来的培育。花开花落,岁月匆匆,转眼间,我们小学六年的时光就要结束了,母校的一草一木、一砖一瓦都刻满了我们成长的足迹。每一声欢笑,每一滴泪水,每一次挥洒汗水,都使我难以忘怀。如今我们即将告别母校,一股眷恋之情,从我心底油然而生。感恩母校,让我们在知识的海洋里尽情遨游,让我们在良好的环境下茁壮成长,让文明、优雅、礼仪,成为相伴我们一生的好习惯。感谢您对我们六年来健康成长的哺育!今天,我们在您的怀抱里感到幸福,明天,我们一定不忘校风校纪,让您因我们而荣光!
2、通过“送图形宝宝回家”的游戏,根据图形的三个特征进行分类。 3、积极参与数学游戏,体验数学游戏的乐趣。 活动准备: 1、教具:大骰子三个,贴好标记。 2、学具: (1)各种图形若干。 (2)贴有标记的小骰子人手三个,各种图形每组一份,人手一只小箩筐。 (3)贴有三个标记的大箩筐若干,连成一列火车。 活动过程: 一、来了一群图形宝宝,看有哪些图形宝宝?复习学过的图形。 教师在黑板上出示各种图形,请幼儿集体或个别回答,说出图形的名称和特征。 如:红颜色的三角形;黄色的正方形等等。要求幼儿能说出图形的特征。 二、帮图形宝宝找朋友。按三个特特征选择图形。 师:图形宝宝要去旅游,想请我们帮她们找朋友。怎么找呢?老师给小朋友准备了三个骰子,我们可以请骰子来帮忙。
一、导入: 1、听音乐,将幼儿带入活动场地放音乐《蜗牛与黄鹂鸟》,幼儿随着音乐入场,跟教师愉快的做运动,活动身体。 2、玩游戏:"小手小脚",小手小手拍拍,我的小手举起来。小手小手拍拍,我的小手抱起来。小手小手拍拍,我的小手转起来。小手小手拍拍,小手小手藏起来。小脚小脚踏踏,我的小脚踮起来。小脚小脚踏踏,小脚小脚踢起来。小脚小脚踏踏,小脚小脚转起来。小脚小脚踏踏,小脚小脚跳起来。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
尊敬的各位老师、亲爱的同学们:早上好!我今天高中新学期国旗下讲话稿的题目是:革命传统精神代代相传“孩子们,喜欢过生日吗?”“因为生日有小礼物,是吗?”“喜欢过节吗?”“因为过节有压岁钱,是吗?”现在社会发展了,生活水平提高了.你们的生活也非常优越,甚至有些同学不用等到过生日,过节,平时就有属于自己的零花钱,但是对于过去的艰苦生活,你们了解吗?同学们,抬头看看用战士们的鲜血染成的五星红旗吧!透过鲜红的五星红旗,你是否又看到了在军阀铡刀前毫无惧色的刘胡兰;你是否又感受到了江姐在敌人酷刑下那撕心裂肺的痛楚;你是否又听到了英雄“为了胜利,向我开炮!”的豪迈呐喊。
老师们同学们:早上好!我们刚欢度了喜庆祥和的春节,又度过元宵节了。元宵节目前虽然还没有像除夕、清明、端午、中秋这四个传统节日一样被确立为国家法定假期,但从古至今,元宵佳节同样也承载了中华民族太多美好的希望和祝福,被历代文人墨客反复歌吟,具有深厚的历史底蕴和文化内涵。“三十的火,十五的灯”,元宵是热热闹闹中国年的“压轴戏”。这一天,一切活动的主题强调一个“闹”字。然而,这里面传承的是怎样的一种传统文化呢?下面请允许我作一个简单的介绍。正月是农历的元月,古人称夜为“宵”,所以称正月十五为元宵节。正月十五日是一年中个月圆之夜,也是一元复始,大地回春的夜晚,人们对此加以庆祝,也是庆贺新春的延续。天上明月,人间情怀,元宵节的明月这一特殊天象形成了中国人特有的月亮节、团圆节、狂欢节。元宵节也称灯节,元宵燃灯的风俗起自汉朝,到了唐代,赏灯活动更加兴盛,皇宫里、街道上处处挂灯,还要建立高大的灯轮、灯楼和灯树,唐朝大诗人卢照邻用“接汉疑星落,依楼似月悬”的诗句来描述元宵节燃灯的盛况,把元宵节燃灯比作天上明月、流星雨一样耀眼绚烂。
从《诗经》的现实主义到屈原的浪漫主义,是中国诗歌发展的一个里程碑。屈原的骚体诗,依诗取兴,引类譬喻,继承发展了《诗经》的比兴传统。《诗经》的比兴较为单纯,而《楚辞》的比兴具有象征的特质,往往成为一个形象的系统。《离骚》中香草美人的比兴就是范例。楚地本是泽乡山国,其间颇有叠波旷宇、崇山秀岭,这些江山的光怪之气足以摇荡心灵、催发丽辞伟句。但骚体诗已冲破《诗经》四言诗的固定格式,句式加长而灵活,篇章放大而严密,诗采绚丽而贴切,是《诗经》之后的一次诗体大解放。有人说,中国历代诗“莫不同祖风骚”,足见其对后代诗歌的影响。先秦时代,《诗经》与《楚辞》双峰并峙,是中国诗史上现实主义与浪漫主义的两座巍然屹立的坐标。
1.本文由“不得极夫游之乐”生发出“尽吾志”的观点,又由“仆碑”生发出“深思慎取”的观点,这两个观点彼此有联系吗?作者游褒禅山,本来是一次平常的游历活动,但却从中悟出了人生哲理──从前洞后洞游人的多少悟出“夷以近,则游者众;险以远,则至者少”,从“入之愈深,其进愈难,而其见愈奇”悟出“而世之奇伟、瑰怪、非常之观,常在于险远”;由此再引申一步,就得出了“非有志者不能至”的结论。然后将这次游山而未能“极夫游之乐”的教训升华到理论上来,具体分析了“至”的几个条件,最后得出“尽吾志”的观点──这正是“求思之深而无不在”的结果。由此可见,“尽吾志”的观点跟“深思慎取”的观点是有联系的:“尽吾志”的观点是在“深思慎取”的基础上产生的;有了这个观点,又能反过来促使人们“深思慎取”,二者是相辅相成的。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。