方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
2、培养幼儿对音乐的感受力、理解力,发挥幼儿的想象。3、熟悉音乐,能用不同的肢体动作表现音乐形象,增强幼儿动作的协调性和对美的感受。 活动准备:1、磁带《风中的童话》ABA段。2、多媒体课件。 活动过程:一、通过游戏帮助幼儿理解音乐三段体结构。1、根据弦外音做适合的动作。(柔和→活泼→柔和)2、再次欣赏音乐,区分段落。 (1)动作是怎样变化的?音乐发生了什么变化?(欣赏) (2)音乐到底发生了什么变化?(出示~~~~~、∧∧∧∧∧、~~~~~) (3)乐曲中有个小秘密,是什么? (4)整首乐曲可以分几段?为什么? (5)小结:一首乐曲分成了3段,这种形式的乐曲称为三段体。刚才我们听到的乐曲,其中第3段音乐和第1段音乐是重复的、一样的,只有第2段是不一样的,这样形式的乐曲也叫三段体,它是三段体的一种特殊形式。
对于我们每个具体的人来说,“中国梦”的核心可以用三句话来概括即:实现自我,回馈社会,拥抱自然。无疑,这是一个人性化、可持续、符合中国价值观和文明特征的简洁公式。在追求个人自我实现的过程中,享受内心的平和,平衡,平静;在与社会的互动回馈中,找寻和谐,和睦,和顺的感觉和定位;在与自然环境的共生共存状态中,尊重自然,享受自然,保护自然。
今天我抽到的说课题目是《甜蜜的家》,这是一个童话故事。它以现实生活为基础,通过丰富的想象、幻想,编制生动的情节来反映生活。《甜蜜的家》就是以家这个现实为基础,通过想象,把小房子拟人化描写他想成为一个甜蜜的家,它向好几只小动物询问要不要一个家,但结果都被拒绝了。直到有一天,北极熊一家搬进了小房子,终于让它拥有了一个甜蜜的家,也感受到了有家的幸福感觉。故事情节虽然比较简单,但是我们可以较清晰地感受到小房子前后的情绪变化,正是通过小房子的情绪变化,蕴涵着一个教育价值:家是甜甜的、暖暖的,是我们每个小朋友幸福的港湾,我们要爱我的家。然而生活在温暖而又甜蜜家庭的孩子们是体会不到没有家的孤单的,自然也不懂得去爱家,甚至关爱自己的家人。因此,这样的情感教育对小朋友是非常必要而有意义的。中班幼儿已经具备一定的生活经验,他们对家有了初步的认识,情感发展逐渐形成,并且他们也正逐渐开始使用一些丰富的、完整的语言来表达想法,故事中出现的“高高的大树,深深的地底,绿色的森林”都是幼儿可以值得学习的短句。于是,我设计了中班语言活动《甜蜜的家》。
本次活动的教学内容是选自安徽省教育科学研究所编制的中班数学活动《春天多美丽》,根据中班幼儿的年龄特点,他们对数数非常感兴趣,对周围事物充满好奇心,而且,数的概念是抽象的,对于幼儿来说,数的认识应强调多感官参与。因此我选择了这个活动,主要是让幼儿能通过观察、数数、动手操作的过程中积极思考,以及灵活运用周围环境让幼儿在完中学、动中学,促进他们数概念的形成与发展。根据幼儿的认知理解水平,我认为本次活动的重点和难点应归结为:在活动中认识数字“10”,理解数字的意义,且不受物体的大小和摆放形式的干扰会用数字“10”表示物体的数量。因此,本课的教学目标有:1、提高幼儿对认数的兴趣。2、认识数字“10”,理解其实际意义。
刚升中班幼儿可能会对调色活动本身感兴趣,他们的兴趣只是停留在操作上。所以本活动的主要是为幼儿提供观察、探索的机会,让幼儿在主动活动中使用颜色,同时充分感受颜色的丰富性。使幼儿的兴趣转移到对活动中出现的科学现象的兴趣上,从而引发进一步探索的愿望。因此我选择了科学活动:《会变的颜色》这节课。
曾看到国外一位教授对他的学生讲过:“你们将来教美术,目的不应该是造就几个专业的艺术家,而是培养一批有美感的国民,让他们从最平凡的东西上见到美;也懂得利用身边平凡的东西创造美;更使他们感受美。”我觉得,艺术以活生生的感性形态存在于时空中,她能激发人们的情绪情感,与学前儿童的认识心理特征和情绪特征完全吻合。在《纲要》中指出教师要“引导幼儿接触周围环境和生活中美好的人、事、物,丰富他们的感情经验和审美情趣,激发他们表现美、创造美的情趣。”因而,我根据季节特征及孩子们生活的经验选择设计了《雨天的蜗牛》。该活动是融渲染、剪、粘于一体的美术综合活动,在塑造和制作过程中引导幼儿认识蜗牛,从而得到潜移默化的教育和帮助。并在此过程中使幼儿认识巩固了空间方位,建立几何形体的概念,发展小肌肉动作进一步培养了对手工制作的兴趣。
此活动的选材来源于生活,筷子是幼儿比较熟悉的一种餐具,他们基本上每天都能看到,用筷子进食是我国的一大特点。常言道,心灵手巧。使用筷子是手的精细协调动作。用筷子夹食物时,不仅是5个手指的活动,腕、肩及肘关节也要同时参与。从大脑各区分工情况来看,控制手和面部肌肉活动的区域要比其它肌肉运动区域大得多,肌肉活动时刺激了脑细胞,有助于大脑的发育。可见,及早进行手的活动功能训练一方面可以让幼儿享受用筷子进餐的乐趣,另一方面对幼儿的智力发育也有好处。中班幼儿的小肌肉不断的发展,可以掌握多种动作技能,而且会比较协调。但班里大部分幼儿不会使用筷子吃饭。因此,我选择此教材让幼儿在游戏练习中学会使用筷子,并体验其中的乐趣。
教要有法,本活动我运用了“直观、探索法”“讨论法”引导幼儿带着问题去观察去思考,下面我对所运用的教法做一个简单的介绍:1.直观、探索法:利用参观“车展”让幼儿更直观去观察各种各样的车,让幼儿通过视、触觉获取有关汽车种类和功能。更直观了解各种各样车的外形特征,帮助幼儿提升原有的经验,又为后面的绘画做好知识准备。2.讨论法:幼儿通过交流各种各样的车达到共同学习,通过讨论充分发表对汽车的外形特征及功能。引导幼儿通过自由和集中交流,大胆和同伴、老师对自己所了解的各种各样的汽车进行交流讨论,使幼儿的认知、语言表达能力得到有效的提高。
中班幼儿主要依靠具体事物的形象和对它们的联想进行思维,与大班幼儿相比,还缺乏通过词语逻辑来思维的能力,他们更多的是在动手玩乐中学习语言,喜欢象征性游戏,对故事表演很感兴趣,喜欢伴随着动作和手偶讲述故事,也喜欢对同一故事重复讲述。我班幼儿多数来自农村,幼儿语言表述能力较弱,多数幼儿长期受爷爷奶奶的溺爱,对父母、他人缺乏一定的爱心,不懂得去关心别人,也不知道如何去关心别人。本次语言活动的组织不失为培养幼儿的爱心,发展幼儿语言能力的一次良好契机,对于中班幼儿来说,理解人是由妈妈怀孕生出来的,知道人的由来有一定的难度,因此,课前让孩子们听妈妈讲怀孕的故事,并与同伴交流,将为孩子们更好地理解故事内容奠定基础。
这是一首散文诗,写是的果园里一年四季都有朋友:梨树、桃树、苹果树,还有受小朋友们喜爱的小蜜蜂、小鸟、小兔等,果园有了这些朋友所以很快乐。此次教学活动就是要让小朋友感受果园的快乐,也感受朋友间带来的快乐。因此,活动以动静结合的方式,让小朋友们去理解和感受。活动的目标是教育活动的起点和归宿,对活动者起着导向作用。幼儿园语言教育的目标之一是“喜欢欣赏文学作品,理解作品内容,感受文学作品的美,具体地说,就是要培养幼儿爱听、爱看、爱讲、爱表演儿童文学作品,能理解并复述简短的句子。”根据中班幼儿年龄的特点及我班幼儿的实际情况,将目标定为:1、欣赏散文诗,并理解散文诗的内容,初步了解一年四季果树的变化。2、能大胆地讲述和表演,发展幼儿口语表达能力和想象能力。3、感受丰收和朋友间带来的快乐。
我园地处农村,教育资源十分丰富。充分利用本地资源,开展低成本高质量的教育一直是我们追求的方向。每年秋季,田间、山头高挂枝头的桔子成了孩子生活中最常见、最熟悉的水果。他们在桔园里嘻戏,观察着桔子由绿变黄,和父母老师一起去摘桔子,桔子的清香让他们难忘。孩子们在摸、闻、尝桔子的过程中,充分运用多种感官感知着桔子,他们发现着桔子的特征;当他们把桔子皮剥开来时,他们的手指需要一定的协调性和力量,手部小肌肉群得到发展和锻炼;因此选择桔子这一孩子们身边熟悉的事物作为教学活动的内容,符合《纲要》提出了的“生活化”“兴趣性”原则。然而,面对中班孩子,随着年龄的增加,生活经验的拓展,他们的探究欲望渐渐强烈,在日常生活中他们对桔子的外形特征已有了基本的认识,已经积累了桔子的基本经验,因此选择《桔子》这一教学内容,如果只是一味的重复关于桔子的基本特征,势必造成集体教学活动的无效,因此,我们从孩子的已有经验出发,从桔瓣排列的环形这一点切入,让孩子们通过观察感知,初步尝试“环形数数”。这一集体教学活动旨在通过多通道的感知,游戏化的学习,激发幼儿对生活中常见事物的兴趣。
教材来源:此次活动来自生活。在秋天这个季节里,蔬菜随处可见,我们取材也非常的方便。蔬菜的品种非常的多,营养价值也非常的丰富,吃法繁多,可以清炒、可以煮汤、可以凉拌、还可以腌着吃,总之,我们的生活里离不开蔬菜。然而,幼儿虽然知道很多的蔬菜,但对蔬菜的种类、用途、营养价值等还不是相当的了解,在我们的日常生活中幼儿不爱吃青菜的现象也是很严重的,加深幼儿对蔬菜的认识,激发幼儿对蔬菜的兴趣,引导幼儿多吃蔬菜是很有必要的。就如《纲要》中所说的,“既符合幼儿园的现实需要,又有利于其长远的发展;既贴近幼儿的生活,选择幼儿赶兴趣的事物和问题,又有助于拓展幼儿的经验和视野。”因此,此次的活动来源于生活,又能够服务幼儿的生活。