1.教学内容:本节教材是北师大版六年级下册第一单元《圆柱和圆锥》,《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,学生尝试题、练习、试一试、练一练第一题。2.教材分析本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。3.教学重点:能正确运用圆锥体积计算公式求圆锥的体积。教学难点:理解圆锥体积公式的推导过程。4.教学目标:(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
第二题先让学生说说规律,有一些学生一开始找不到规律,我就提示孩子把第一个数字盖上再看,这样孩子就能很快找到规律了。说明有时候不是整体重复而是一部分,高年级学的循环小数就是这样。第3小题是4个数字重复,大部分学生可以迅速找出重复的规律。3、会场一共排了10个灯笼,请问大灯笼有几个?小灯笼有几个?如果有15个呢?10÷2=5(组)答:大灯笼有5个,小灯笼有5个。这里要说明为什么要除以2,因为是两个一组。15÷2=7(组)……1(个)7+1=8(个)答:大灯笼有8个,小灯笼有7个。这里让学生说说余的1表示什么意思?表示一组的第一个。四、小小设计师用这节课学习的“重复”的规律设计一副简单又漂亮的图案。学生独立设计,然后上台展示。五、总结:今天你学到了什么?这节课我就说到这里,请各位老师提出宝贵意见。谢谢!
1.要有充分的直观操作。学生思维的特点一般的是从感性认识开始,然后形成表象,通过一系列的思维活动,上升到理性认识。本课的教学采用直观操作法,是一个重要的环节。2.启发学生独立思考。学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。3.讲练结合。4.充分运用知识的迁移规律,引导学生掌握新知识。教学过程:三、说教学过程:(一)、创设情境上课前,教师先给大家讲一个与今天的学习内容有关的故事,希望同学们认真地听、认真地想。故事是这样的:大象过生日啦!那天来了很多的朋友,有小兔、小猴等等等等,可热闹啦!在众多的朋友中只数小兔最高兴,它乐什么呢?原来它知道了蛋糕的分配方案,认为自己分的蛋糕比小猴的大。蛋糕是这样分配的:分给小兔的蛋糕是棱长10厘米的正方体,分给小猴的蛋糕是棱长1分米的方体。(分别出示两块同样大小的正方体,用10厘米和1分米表示它们的棱长)
(一)说教法本节课我先出示情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而列出算式。接着讨论具体的计算方法。教材中呈现了两种计算方法。在这个过程中,先让学生自主进行计算,再组织讨论和交流算法之间的联系,明白分数混合运算的顺序。通过本节教学,使学生学会有顺序的观察题、认真审题、分析数量关系、正确计算、概括总结、检查的学习习惯。(二)说学法本节课是分数加减法的第二课时,因为前面学习异分母分数的加减法以及应用异分母加减的知识,因此,大多数学生对这一类型的加减法已经有了一定的计算能力和计算方法,基于此,我在教学中将加减运算的学习和解决问题结合起来,在加强学生的计算能力的同时,更侧重了学生提出问题和解决问题的能力的训练,也就是让学生在经历探索运算方法的过程中,体验算法多样化。
尊敬的老师、亲爱的同学们:大家早上好!我是四年级七班的张笑寒。今天国旗下讲话的题目是《做一个有道德的人》。同学们,你们知道9月20日是什么日子吗?让我来告诉你们吧!是“公民道德宣传日”。未成年人是祖国未来的建设者,是社会主义事业的接班人!我们肩负使命!我们任重道远!古往今来,沧海桑田,虽时光流逝,但美德未减。骁勇善战的霍去病,毅然隐世的陶渊明,慷慨悲歌的文天祥,精忠报国的岳飞,虎门销烟的林则徐,拒领“救济粮”的朱自清……再看看新时代那些当之无愧的道德英雄:“雷锋传人”——郭明义,舟曲之子——王伟,警界保尔——孙炎明……他们是民族的脊梁,他们是道德的旗帜,他们是人格的丰碑。意大利诗人但丁说过:“一个知识不全的人,可以用道德去弥补,而一个道德不全的人,却难以用知识去弥补。”在家里,让我们为忙碌了一天的父母捧上一杯热茶;在学校,让我们为学习困难的同学把疑问解答;在车上,让我们扶着年迈的老人坐下。只要我们从现在做起,从小事做起,我们就会成为有道德的好少年。同学们,让道德的种子在我们心里生根,发芽!让我们一起努力,加油吧!谢谢大家!
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.
解析:横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的x值,即15时,A对;温度最低应找到图象的最低点所对应的x值,即3时,B对;这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16(℃),C错;从图象看出,这天0~3时,15~24时温度在下降,D对.故选C.方法总结:认真观察图象,弄清楚时间是自变量,温度是因变量,然后由图象上的点确定自变量及因变量的对应值.三、板书设计1.用曲线型图象表示变量间关系2.从曲线型图象中获取变量信息图象法能直观形象地表示因变量随自变量变化的变化趋势,可通过图象来研究变量的某些性质,这也是数形结合的优点,但是它也存在感性观察不够准确,画面局限性大的缺点.教学中让学生自己归纳总结,回顾反思,将知识点串连起来,完成对该部分内容的完整认识和意义建构.这对学生在实际情境中根据不同需要选择恰当的方法表示变量间的关系,发展与深化思维能力是大有裨益的
解析:(1)根据图象的纵坐标,可得比赛的路程.根据图象的横坐标,可得比赛的结果;(2)根据乙加速后行驶的路程除以加速后的时间,可得答案.解:(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点;(2)由图象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),乙与甲相遇时乙的速度600÷1.6=375(米/分钟).方法总结:解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用的信息,明确实际意义.三、板书设计1.用折线型图象表示变量间关系2.根据折线型图象获取信息解决问题经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到关系式这一过程,提升学生的数学应用能力,使学生在探索过程中体验成功的喜悦,树立学习的自信心.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣
1、 谈话引入新课六一快到了。小朋友们在老师的带领下忙着布置自己的教室呢!可是他们遇到了一些数学上的问题,你能帮他们一快解决吗?2、教学例1。(1)、投影出示主题图引导学生仔细观察。说说他们遇到了什么问题?(2)、引导学生解决问题并列出算式。板书:56÷8(3)、引导学生得出算式的商。问:你是怎么计算的?(想乘算除)(4)、学生独立解决:要是挂7行呢?你能够解决吗?学生说出自己的计算结果,并把求商的过程跟大家说一说。2、 小结:在今天的学习中我们不仅帮小朋友们解决了数学问题,而且还进一步学会了利用乘法口诀来求商。在以后的除法中只要大家能够熟记口诀,就能很快算出除法的商了。
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。培养学生的整体观念,灵活运用公式的能力。注重总结做题步骤。这章节知识看起来很简单,但操作性很强的,相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手,基础不好的学生需要手把手的教,因此,应该引导学生总结多项式因式分解的一般步骤①如果多项式的各项有公因式,那么先提公因式;
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
1.自学文本出示书中情境图:有21架飞机要参加飞行表演,怎样飞呢?想请同学们帮忙设计编组方案,下面小组同学合作,用学具摆一摆,设计出自己的编组方案,看哪个小组设计的方案最多?学生小组合作,边摆学具边说方案。2.交流研讨哪组想到前面来汇报一下你们制定的飞行方案?(不必强调平均分,如有小组同学说出每组有7(3)架,可以分成3(7)组,或每7(3)架一组,可以分成3(7)组,老师在给予肯定的同时可以问其它小组摆法一样吗?之后板书算式:21÷7=3,21÷3=7。如果学生没说出平均分,老师可引导说:有时表演的每组也可同样多)
(2)研究正方形:通过前面这个环节,学生已经掌握了研究长方形特征的方法,很自然地拿出一个正方形,通过看、数、量、折、小组讨论、展示交流等活动归纳出正方形的特征:正方形四条边都相等,四个角都是直角,这也是本节课的重点内容,但并不是难点,可由中下学生来完成,给他们以展示技能的机会。通过一系列的探究活动,学生的学习积极性已被调动,思维正处于活跃阶段,此时我把学生带到本节课的难点环节(3)想一想,长方形和正方形有什么相同点和不同点?对于学生的思考结果,老师并不急于回答,而是引导学生从长方形和正方形边和角的共同点去进行研究分析,让学生充分经历思考学习的过程,最后才巧妙地借助多媒体,直观地帮学生理解正方形是一个特殊的长方形,在这里多媒体化静为动,化抽象为直观,较好地帮学生突破了难点。至此,学生已经掌握了长方形、正方形的有关知识,此时,他们急于找到一块用武之地,以展示自我,体验成功,于是我把学生带入到“应用新知,理解提高”的环节。
(四)巩固新知,拓展应用。1、让练习变得生动有趣。一节数学课,练习的设计也是不容忽视的重要环节,针对低年级学生的特点,我设计的习题具有一定的趣味性并与生活息息相关。把竖式修改变成了森林医生,看谁能帮助森林医生找到大树的病因,医好大树的病。以此来激发学生的学习兴趣,提高学生的计算能力2、(爱心小行动),学生给小动物找家,引导学生独立思考发现只要小动物身上的数字卡片和房子的算式得数相同,小动物就可以回家了。但是有一个多余信息只有一只小兔没有家,怎么办呢?我因势利导,学生纷纷帮它设计很多家。充分发挥了孩子的创造力、想象力,只要算式的结果是14,教师就给予肯定。这一开放有趣的练习不仅使计算方法得到灵活运用,同时培养学生助人为乐的好品质。3、接下来,我们来玩一个乘车游戏,游戏规则可要听清楚啦:待会儿,大屏幕上开出几号车,你手中算式卡片的得数正好等于这辆车的车号,你就赶快上台来乘车。
一、说教材:1.说课内容:本节课的内容是北师大版5年级数学下册第8单元的《复式折线统计图》。2.教材分析:这节课的内容是在学生学习了单式折线统计图和复式条形统计图的基础上教学的。这节课的内容包括制作复式折线统计图的必要性、制作方法以及对这种统计图的分析预测。教材在设计中,主要突出了以下两个方面:(1)对比。为了方便比较甲、乙两个城市各月的降水量,把两个单式折线统计图画在同一幅图上,变成复式折线统计图。让学生感受出现复式折线统计图的必要性和其带来的好处。(2)读图。通过对复式折线统计图中两条折线升降的分析,对数据进行合理的预测,这也是课标的要求。3.教材的地位和作用:本课的学习,不但可以用来解决日常生活中的一些实际问题,也是今后学习更多其他统计图的重要基础。
教学目标:(1)知识目标:1.能够听、说、认读句子:Let's read, Let's make ,listen,write,match and say 中的句子。2.能够听懂 Listen and write 部分的录音并正确填写句子。(2)能力目标:通过教学,使学生能够了解英语请柬的内容并会模仿书写英语请柬。(3)情感目标:培养师生之间和同学之间的友谊与情感,积极鼓励学生展现才能。三、说教学重点:1.能够听、说、认读句子:"We're going to have a farewell party . How do you feel? I feel …."四、说教学难点:Is every having a good time?五、说教法:1. 教法设计本节课中,在教学过程中注意发挥学生的主动积极性,给学生一个轻松愉快的语言学习氛围,让学习过程充满乐趣,同时使他们感受到一定的挑战,满足他们的成就感,使思维始终处于积极状态。2. 学法指导重视多元智能教学原理、合作学习法和任务型语言学习法等应用,充分调动学生的感觉器官,想象能力,激发学生积极参与课堂教学活动。
一、教材分析“商中间、末尾有0的除法”是人教版义务教育课程标准实验教材数学三年级下册第二单元“除数是一位数的除法”的最后一部分内容。属于“数与代数”的知识领域的数的计算。例6是其中“被除数哪一位上的数是0且前面没有余数时要在商这一位上写0”的情况。在这一例题之前,教材先安排了“基本的笔算除法”和“除法的验算”内容。因此,在学习本例题之前,学生对“除数是一位数的除法”的算理、算法已经基本掌握,因此有了一定的基础。“商中间、末尾有0的除法”只是除法中的特殊情况,是除法计算法则的补充,也是这一单元的难点内容。关键是让学生亲历“0占位”的思维过程,为以后四年级学习“除数是两位数或多位数”的除法奠定基础。
一、目标学习目标的制定,我主要依据学材、学情、课标这几个方面。基于教材的分析本节内容选自九年级义务教育教科书(人教版)六年级下册第三章第二小节第一部分《圆锥的认识》。这一部分是在学生掌握了圆和圆柱的相关知识的基础之上而安排的内容。我们要想认识圆锥,进一步学习有关它的知识,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面学习起到一个良好的铺垫作用。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。因此,我将圆锥的特征作为本节课的学习重点。基于学情的分析由于已经是六年级的学生了,他们的主动性和能动性已经有较大的提高,能够有意识的去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。所以在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具体情境中亲自体验感知圆锥的特征。