提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版新目标初中英语八年级上册How do you make a banana milk shake说课稿8篇

  • 北师大初中九年级数学下册正切与坡度1教案

    北师大初中九年级数学下册正切与坡度1教案

    已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.

  • 北师大初中九年级数学下册垂径定理教案

    北师大初中九年级数学下册垂径定理教案

    方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.

  • 北师大初中九年级数学下册第一章复习教案

    北师大初中九年级数学下册第一章复习教案

    一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。

  • 北师大初中九年级数学下册二次函数1教案

    北师大初中九年级数学下册二次函数1教案

    (2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.

  • 北师大初中九年级数学下册二次函数2教案

    北师大初中九年级数学下册二次函数2教案

    4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  • 北师大初中九年级数学下册切线长定理教案

    北师大初中九年级数学下册切线长定理教案

    (3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.

  • 北师大初中九年级数学下册圆教案

    北师大初中九年级数学下册圆教案

    解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.

  • 北师大初中九年级数学下册圆的对称性教案

    北师大初中九年级数学下册圆的对称性教案

    我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.

  • 北师大初中九年级数学下册正切与坡度2教案

    北师大初中九年级数学下册正切与坡度2教案

    教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:

  • 北师大初中九年级数学下册正弦与余弦1教案

    北师大初中九年级数学下册正弦与余弦1教案

    解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.

  • 北师大初中九年级数学下册正弦与余弦2教案

    北师大初中九年级数学下册正弦与余弦2教案

    [教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.

  • 部编人教版五年级下册《人物描写一组》说课稿

    部编人教版五年级下册《人物描写一组》说课稿

    二、说教学目标及重难点:1.教学目标 :(1)自主学习字词,会认“噶、绊”等12个生字,会写“搂、仗”等15个生字,理解字义,识记字形。正确读写和理解“手疾眼快、一叉一搂、公鸡鹐架、冷绊子、挺脱、诸亲六眷、监生、一声不倒一声、已后、登时”等词语。(2)正确、流利地朗读课文,体会人物的性格特点,感受小嘎子、车夫、严监生这三个鲜活的人物形象。(3)理解课文内容,学习作者抓住人物的动作、语言、外貌、心理活动等描写人物的方法,学习表现人物某一方面特点的写作方法。(4)激发学生阅读中外名著的兴趣。2.教学重点:体会人物的性格特点,感受小嘎子、车夫、严监生这三个鲜活的人物形象。3.教学难点:学习作者抓住人物的动作、语言、外貌、心理活动等描写人物的方法,学习表现人物某一方面特点的写作方法。

  • 部编人教版五年级下册《童年的发现》说课稿

    部编人教版五年级下册《童年的发现》说课稿

    一、本节课的设计理念: 课题中的“发现”一词是本文的文眼,教学中引导学生从课题入手提出疑问,然后进行梳理明确主要学习任务。学生自主学习,了解“我”发现了什么,重点了解“我”是怎么发现的,理清作者童年时发现胚胎发育规律的过程。二、教材分析:本课是一篇鼓励求知、鼓励大胆想象、鼓励探究发现的课文,通过作者回忆童年时发现胚胎发育规律这件趣事,反映了儿童求知若渴的心理特点和惊人的想象力。第一部分先概述了“我”九岁时发现了有关胚胎发育的规律,却在后来因此受到惩罚。第二部分具体叙述“我”发现有关胚胎发育规律的前后经过。最后,写这个发现在几年后老师讲课时得到证实,“我”情不自禁地笑出了声,结果被老师误解受到处罚,但“我”从中获得感悟。本文故事情节充满童真童趣,语言风趣幽默,并有多处内心活动的描写,真实展现了孩子内心世界。

  • 部编人教版五年级下册《景阳冈》说课稿(一)

    部编人教版五年级下册《景阳冈》说课稿(一)

    全文按事情发展的顺序,可分为“喝酒”、“上冈”、“打虎”、“下冈”四部分。纵观全文,有如下特点:1.篇幅较长,适合学生进行快速默读训练。2.本文生字和难读字较多,在布置预学作业时,重点是鼓励学生多花时间掌握生字新词。3.课文中出现了许多学生日常阅读中较少出现的文言词汇,很多字词的古今意义相差较大,在理解上造成了一定的困难。只有在扎实理解这些词汇的基础上,才能顺利地理解课文。4.教材在具体描写人物时,突出了武松的语言、心理和动作。特别是描写“打虎”一章时突出了武松的动作描写,而在“喝酒”一章中则强调了人物的语言。“上冈”时着重表现人物心理。因此在阅读指导中,应紧紧抓住人物的对话,心理和动作,来指导学生概括分析人物个性品质,这是本课的训练重点。

  • 小学数学人教版五年级下册《数与代数》说课稿

    小学数学人教版五年级下册《数与代数》说课稿

    一、说教学内容分数的意义和性质以及分数的加、减运算教材115页总复习以及教材118页练习二十八第6~9题。二、说教学目标1. 使学生进一步理解和掌握分数的意义及性质,并能解决一些问题,使学生进一步理解同分母、异分母分数加、减法的算理,掌握同分母、异分母分数加、减法的计算方法。2.能熟练地进行约分和通分,认识约分、通分的重要性,教学过程中,培养学生分析概括的能力,并进一步培养学生的计算能力。3.初步形成评价与反思的意识,渗透转化的数学思想和方法。培养学生合作学习的能力,提高学生互帮互助的思想品质。三、说教学重点、难点重点:分数的意义及基本性质的应用。难点:进一步理解同分母、异分母分数加、减法的算理,培养学生的简算意识和应用能力。

  • 部编人教版五年级下册《月是故乡明》说课稿

    部编人教版五年级下册《月是故乡明》说课稿

    作者巧妙安排文章结构。开篇点题,总结全文,引起下文,为下文做铺垫,设置悬念,引起读者的阅读兴趣。接着由月过渡到山,到水,进而过渡到家乡的水,过渡到作者的童年生活,并通过他乡月亮与故乡月亮的对比,表达自己对故乡的思念。结尾处短短几句话,把全文的情感推向了高潮。本文的主旨是表达对故乡的思念之情,文章中对于景和事的描述都是为表达对故乡的思念之情服务的。在文中,作者通过对故乡月亮的具体描述,表达了对故乡的思念之情;捉知了、看月亮、游玩、做梦这些童年趣事都跟月亮有关,写这些事也是围绕着月亮来写的,这样更能表达出对故乡的思念;通过在济南、北京和世界其它地方见到的月亮与故乡月亮的对比,表达对故乡的深情;作者拿赏月胜地朗润园与故乡的小月亮对比,表达浓浓的思乡之情,正如作者所说,“然而,每逢这样的良辰美景,我想到的却仍然是故乡苇坑里的那个平凡的小月亮”;最后作者直抒胸臆“月是故乡明,我什么时候能够再看到我故乡里的月亮啊!”表达对故乡的思念。

  • 部编人教版五年级下册《自相矛盾》说课稿

    部编人教版五年级下册《自相矛盾》说课稿

    三、说教学目标:根据对教材的深入分析,及对学生现状的了解,拟定本课的教学目标为:1.知识目标:(1)正确、流利、有感情地朗读课文。(2)学习本课生字、生词。(3)理解课文内容,知道自相矛盾的含义。2.能力目标:初步了解学习文言文的方法,能通过课文大意弄懂古文的意思。3.情感目标:凭借课文中具体的语言材料,使学生在理解寓意的过程中受到启发教育,能激发学生学习文言文的兴趣。4.教学重难点:(1)引导学生抓住对话中的关键性的话语展开思考、读、讨论。掌握学习文言文的方法。(2)理解古文的意思,弄懂寓言的寓意,并用自己的话表达出来。 四、说教法、学法:教法:紧紧抓住读这个重点,采取: 读通——读懂——读好——读透的“四读法”进行展示交流,以读贯穿整个课堂,让学生在读中感受文言文的语言美、意境美、韵味美,在读中理解文意,在读中明白寓言所揭示的道理。

  • 部编人教版五年级下册《青山处处埋忠骨》说课稿

    部编人教版五年级下册《青山处处埋忠骨》说课稿

    一、说体系《青山处处埋忠骨》这篇课文是语文第十册第四单元的一篇课文。本文主要讲了毛泽东的爱子毛岸英在抗美援朝的战争中光荣牺牲后,毛泽东惊悉这个噩耗后极度痛苦的心情和对岸英遗体是否归葬的抉择过程,表现了毛泽东常人的情感,伟人的胸怀。二、说教学目标语文课程应致力于学生语文素养的形成与发展。根据教材编写意图和新课标教学要求,结合学生思维情感、认知发展的需要和教学实际,我从知识与技能、过程与方法、情感态度价值观这三个维度进行考虑,确定了以下目标:(1)认识本课生词。(2)有感情地朗读课文,了解课文内容,感知毛主席的伟人胸怀和常人情怀。这样确定教学目标,使传授知识,发展能力和陶冶情操紧密结合,在同一教学过程中,互相渗透,共同完成。

  • 部编人教版五年级下册《刷子李》说课稿(二)

    部编人教版五年级下册《刷子李》说课稿(二)

    二、说教学目标及重难点:1.教学目标 :(1)自主学习字词,会认“浆、傅”等7个生字,会写“浆、傅”等15个生字,理解字义,识记字形。正确读写“粉刷、刷浆、规矩、徒弟、端茶、点烟、跟在、屁股、师傅”等词语。(2)有感情地朗读课文,了解一位普通手艺人高超的技艺。(3)继续领悟并学习作者刻画人物的方法。2.教学重点:感受人物形象,体会作者抓住细节描写人物的方法。3.教学难点:领悟并学习作者刻画人物形象的方法。三、说学情:作为五年级的学生,他们已经有了一定的自学能力,有了一定的认知范围,所以我要求学生通过课前预习提前掌握文中的生字新词;通过搜集资料了解作家冯骥才;熟读课文,感受刷子李的特点。

  • 部编人教版五年级下册《刷子李》说课稿(一)

    部编人教版五年级下册《刷子李》说课稿(一)

    一、说教材:我所执教的《刷子李》选自冯骥才的《俗世奇人》。是五年级下册中的一篇课文。“刷子李”普普通通,却有“俗世奇人”之美称。首先是“俗世”中的“凡人”,因为他是生活于市井里巷的凡夫俗子,是一位普普通通的手艺人;可他又是“俗世”中的“奇人”,因为他刷墙的技艺高超,让“行外的没见过的不信,行内的生气愣说不信”。他有才能、有个性,喜怒哀乐样样俱全,但行事言语又高于常人,所以,用“俗世奇人”之称最为恰当。这篇短文以“刷子李”的高超手艺为话题。作者写“刷子李”的奇妙绝活时,首先极力写他手艺之高,“他要是给您刷好一间屋子,屋里什么都不用放,单坐着,就如同升天一般美。最让人叫绝的是,他刷浆时必穿一身黑,干完活,身上绝没有一个白点。”然后作者从一个小徒弟的视角印证了“刷子李”的真功夫:起初,徒弟是“半信半疑”,但大半天下来,居然连一个芝麻大的粉点也没发现,他真觉得这身黑色的衣服有种神圣不可侵犯的威严。

上一页123...798081828384858687888990下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!