【活动重难点】 重点:通过实验感知溶解的特性。 难点:知道物体的溶化速度与水的温度、物体的形状大小等有关。 【活动准备】 1、教师准备一只玻璃杯、鹅卵石。 2、幼儿实验用具、用品:每个幼儿三只透明杯、一只食用匙;每组三种实验材料,分别为面糖、砂糖、方糖;每组一盆温开水、一盆凉开水。 3、袋装果珍、泡腾片。 【活动过程】 一、开始部分: 1、观察引导,激发兴趣。 ( 1)教师出示一颗鹅卵石,再将其放入装水的玻璃杯中,让幼儿观察有什么变化。 (2)请幼儿思考:鹅卵石在水中没发生什么变化,那么其他东西放入水中会发生什么变化呢?
活动目标:1. 了解动物的不动种类,能说出几种动物的名称及主要特征.2. 了解海洋动物与人之间的关系,形成爱护海洋动物的意识.3. 培养倾听的习惯,激发与同伴合作、竞争的意识.活动准备:1. 参观水族馆.2. 开展以“海洋动物”为主题的生成活动.
[活动目标]1、通过剪、折、粘训练幼儿的手眼协调能力和思维敏捷力。 2、让幼儿自主探索使纸站立的方法,激发其对纸探索的欲望。 3、培养同伴间的合作能力。[活动准备] 幻灯片、剪刀每人一把、双面胶每组两卷、纸篓五个、展台一个、城堡模型一个、手工纸若干张 [活动过程] 一、故事导入(幻灯片出示) 1、师:来,老师给小朋友们讲一个故事。 小纸片生来扁扁的,非常孤独它好想像小鸡一样站起来,来看看外面的世界有多美! 2、故事后提问:小朋友小纸片想干什么呀!(站起来) (评析:利用幻灯片中的形象画面,激发幼儿的兴趣和探索欲)
1、谈话导入: 师:“刚才小朋友告诉我,潍坊有许多好玩的地方,潍坊是世界风筝之都。我的家乡是寿光。寿光是中国蔬菜之乡,每年的4月20日国际蔬菜博览会开幕,菜博会上有许多千奇百怪的蔬菜和蔬菜组成的美丽景色,今日教师就带你们到菜博会的展厅、超市和生态餐厅去逛一逛。我们先到展厅来看看。 2、引导幼儿欣赏菜博会的精美图片。 师:“这是什么?”“我们坐下来慢慢观赏吧。”
二、活动方式:班长、团支书主持,全体学生参与 三、活动过程: 1、全体起立,奏国歌。 2、男女主持人主持 3、图片:日本侵略者在华犯下的滔天罪证。 4、图片:见证前段时间在中国掀起的反日浪潮。 5、学生发言讨论“如何正确、理性地看待前段时间的反日情绪?” 6、学生发言讨论“我们中学生应该怎样去爱国?” 7、班主任老师作班会总结。 8、学生合唱《歌唱祖国》。
教学过程:一、鉴赏对比《北风吹》《扎红头绳》{过渡语}师:刚才我们欣赏了歌剧《白毛女》的几个著名片段,你能在刚才的歌曲中找一找歌剧需要具备的要素吗?同学们来比较一下:北风吹和扎红头绳表现出的不同的音乐要素?下面由同学们来一起分组讨论: 曲 目 速度 力度 音色 演唱形式 表达情绪 音乐特点《北风吹》 中 中弱 女高音 女声独唱 天真、期盼 下行休止符运用《扎红头绳》 快 中 女高音 对 唱 欢快、活泼 旋律跳进,节奏密集设计意图:学生通过选用合适的音乐为故事配音的活动,更深刻地认识音乐在其中的作用。师:刚从我们的小演员的表现中我们所感受到不同的音乐情绪:天真期盼、欢快、悲恸。音乐根据不同需要可以刻画出不同的艺术形象表达不同的情感。我们还知道了对塑造刻画音乐形象起重要作用的是音乐作品中的音乐要素。二、情景剧编创老师简析:(导出情景剧表演) 1,师:你能说一说他们的声音有什么特点吗?(喜儿:声音清脆、甜美 杨:浑厚、低沉)2. 出示歌谱,学生模仿二人的声音朗读歌词。 再次听赏歌曲,体会两首歌曲的旋律特点。(《北风吹》:舒缓 《扎红头绳》:欢快)3. 模仿二人的声音演唱歌曲《扎红头绳》。4. 师:听了他们的声音,你能描绘出他们的形象吗?设计意图:学生通过听、看,感受不同人物的音色特点,并能听辨不同情绪的音乐,能用语言作简单描述,并通过歌曲了解故事发展情节。
教学过程:一、创设情景、激趣引入欢迎大家来到今天的音乐课堂。老师为你们准备了一段舞蹈,大家想看吗?教师表演《白毛女》)刚刚老师跳舞时的音乐大家有没有听过?他叫什么名字?你知不知道他是选自哪部电影里的音乐。(《白毛女》)在课前,老师让大家收集了有关电影《白毛女》的资料,哪位同学愿意跟大伙说说你收集的情况。(学生展示收集情况,教师进行点评。)老师也在网上、新华书店收集到了《白毛女》中的一些音乐资料,现在请大家来欣赏一下,同时帮教师辨别一下,它们都采用了哪些形式来表现歌曲。二、模仿外形、感受形象师:通过这些视频资料,大家可能对《白毛女》中的两位主角从形象上有了更进一步的了解,下面让我们来玩个游戏,大家看过“模仿秀”节目没有?想不想今天也来亲身参与、秀上一把。首先进入第一关:形象模仿。请各组选出两位模特,利用老师提供的材料,从外形上模仿一下喜儿、杨白劳。限时3分钟看哪一组模仿得又快又像。师:时间到,让我们来看看各组的完成情况。掌声有请我们的模特上场。从他们的这身打扮上你们觉得人物会具有怎样的性格。(学生回答)教师补充:喜儿是一个天真可爱的小姑娘,而杨白劳则是一个受尽了剥削、很老实的一个农民。请我们的模特们做出几个符合人物性格特点的动作!
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
解 由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a =1.21×2 = 2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3 当x=-3时,多项式mx3+nx-81的值是10,当x = 3时,求该代数式的值.解 当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.
分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的 , 和 。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律? (2)逆用分配律 第42页 5、用简便方法计算(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
解:由题意得a+b=0,cd=1,|m|=6,m=±6;∴(1)当m=6时,原式=06-1+6=5;(2)当m=-6时,原式=0-6-1+6=5.故a+bm-cd+|m|的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的应用性问题小红家春天粉刷房间,雇用了5个工人,干了3天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工100元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择哪种方案付钱最合算(最省)?解析:根据有理数的乘法的意义列式计算.解:第一种方案的工钱为100×3×5=1500(元);第二种方案的工钱为4800×30%=1440(元);第三种方案的工钱为150×12=1800(元).答:选择方案二付钱最合算(最省).方法总结:解此题的关键是根据题意列出算式,计算出结果,比较得出最省的付钱方案.
讨论归纳,总结出多个有理数相乘的规律:几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。(2)几个不等于0的因数相乘时,积的绝对值是多少?(生:积的绝对值是这几个因数的绝对值的乘积.)例2、计算:(1) ;(2) 分析:(1)有多个不为零的有理数相乘时,可以先确定积的符号,再把绝对值相乘;(2)若其中有一个因数为0,则积为0。解:(1) = (2) =0练习(1) ,(2) ,(3) 6、探索活动:把-6表示成两个整数的积,有多少种可能性?把它们全部写出来。(三)课堂小结通过本节课的学习,大家学会了什么?(1)有理数的乘法法则。(2)多个不等于0的有理数相乘,积的符号由负因数的个数决定。(3)几个数相乘时,如果有一个因数是0,则积就为0。(4)乘积是1的两个有理数互为倒数。(四)作业:课本作业题
方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
1.掌握有理数混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.在运算过程中能合理地应用运算律简化运算.一、情境导入在学完有理数的混合运算后,老师为了检验同学们的学习效果,出了下面这道题:计算-32+(-6)÷12×(-4).小明和小颖很快给出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小颖:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判断出谁的计算正确吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.
师生共同归纳法则2、异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。生5:这两天的库存量合计增加了2吨。(+3)+(-1)=+2 或(+8)+(-6)=+2师:会不会出现和为零的情况?提示:可以联系仓库进出货的具体情形。生6:如星期一仓库进货5吨,出货5吨,则库存量为零。(+5)+(-5)=0师生共同归纳法则3、互为相反数的两个数相加得零。师:你能用加法法则来解释法则3吗?生7:可用异号两数相加的法则。一般地还有:一个数同零相加,仍得这个数。小结:运算关键:先分类运算步骤:先确定符号,再计算绝对值做一做:(口答)确定下列各题中和的符号,并说明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 计算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:请四位学生板演,让学生批改并说明理由。
【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1ap(a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础
问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】 底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.
1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。