已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
[教学目标]1.知识与技能:巩固 100 以内数的认识,进一步理解数位和位值的含义,发展学生有序的思维能力,以及培养他们的归纳能力。2.过程与方法:学生经历“摆一摆、想一想”的主动探索的学习过程,探索出100 以内数的特点及规律。3.情感、态度与价值观:在实践操作中,通过找规律来发展学生的初步抽象思维能力。[重点难点]1.教学重点:进一步理解数位和位值的含义,发展学生有序的思维能力,以及培养他们的归纳能力。2.教学难点:发展学生有序的思维能力。[教学准备] 课件、数位表、磁力扣、围棋子(每人3 颗)。[教学过程]一、激趣导入1.用 1 颗棋子摆数。师:今天,我给同学们请来了一位好朋友,你们看!课件演示:同学们,大家好!我是围棋宝宝,今天我来和大家一起学习,你们高兴吗?这是你们学过的数位表吧?我也来看看!(围棋子跳到个位上)你们知道我现在表示几吗?为什么?生:表示 1,因为个位上有 1 个。
你能不能用你的本领把这山村美景表达出来呢? 老师请画画的小朋友在这花丛里,写诗的在小山坡上……….. 四、完美结课: 小朋友玩的高兴吗?好我们一起回家啦!(播放《郊游》)。 教学反思: 启发学生“你都想到了什么?”从而让学生展开丰富的想象,经过教师的简单小结使学生了解了牧童的生活和放牧时的心情,为学唱歌曲《放牛歌》做情感铺垫。 接下来的“体验理解”环节还是以激发学生兴趣为主,从猜小牧童的“宝贝”(笛子)模仿小牧童吹笛子的动作,到学吹笛子的有节奏的嘀嘀声XXXXXX,到有节奏的模仿小黄牛的叫声X-,我都是在让学生从间奏入手的,目的:一是引导学生会听音乐,能听出哪是间奏;二是让学生充分感受歌曲的旋律,熟悉歌曲;三是培养学生[此文转于斐斐课件园 FFKJ.Net]节奏感,知道笛声和小黄牛的叫声表示的节奏是什么,对两个声部的节奏训练进行一次渗透和尝试。
教学目标【知识与技能】1.能结合具体图形理解垂直的概念,能经过一点画已知直线的垂线.2.通过画图,理解垂直公理及“垂线段最短”这个公理.3.理解点到直线的距离这一重要概念.4.初步锻炼作图能力,能运用本节的两个公理进行简单的说理或应用.【过程与方法】通过画图探究出两个公理,在不同的情况下过一点作已知直线的垂线,通过看图会找出点到直线的距离,在此基础上深入理解本节的两个公理,进而运用它们进行简单的说理或应用.【情感态度】进一步进行画图、探究、归纳等数学活动,特别强调动手画几何图形,体验数学的严密性、科学性、美观性.
课后反思:由于学生已初步具备认读生字的能力,教学时我把主动权交给学生,有利于调动学生识字的积极性和创造性,培养学生识字的能力。再者,我严格要求学生按照笔画顺序来书写,同时还注意充分发挥学生学习的主动性与创造性,鼓励他们运用各种方法来识记生字。另外学生边说笔画名称边书空,增加学生对生字的记忆力,然后我对关键笔画进行点拨,最后让学生描红、临写。我在巡视过程中适当指点,并给学生写得好的字画个小红星,这对学生起到较大的激励作用。我在学生猜谜底时通过表演的形式,不仅激发了学生的兴趣,还能给学生更加形象生动的视觉刺激,会教学目的很好的完成。
细读课文,理解内容。(一)学习课文第一小节。1.(出示:一条小毛虫趴在一片叶子上,用新奇的目光观察着周围的一切:)(强调冒号)师读。这个一切是指——2.?“新奇的目光”是一种怎样的目光?你能换一个词语说说吗?(近义词:好奇)3.请几位同学来为大家读读这句话,要求读出“新奇”的感觉。4.小毛虫在观察。它难道不想加入昆虫们的活动可是……(出示:只有它,这个可怜的小毛虫,既不会唱,也不会跑,更不会飞。)读了这句话,你觉得小毛虫怎么样?(可怜——【板书:可怜】)那它是怎么移动的呢?读一读课文的第二小节。(二)学习课文第二小节。1.(出示:小毛虫费了九牛二虎之力,才挪动了一点点。当它笨拙地从一片叶子爬到另一片叶子上时,它觉得自己就像是周游了整个世界。)小毛虫给你留下了什么印象?从文中找一个词回答。(笨拙)【板书:笨拙】
(一)组织上课师生互相问好。(二)欣赏歌曲音乐是美好的,他能愉悦我们的身心,带给我们快乐。今天老师要送给同学们一首美丽的乐曲,希望同学们天天快乐。下面,请同学们和老师一起走入歌曲的世界吧。(播放《蝴蝶》)(三)新课学习教师带领学生欣赏各种蝴蝶的照片。师:蝴蝶美不美呀?谁愿意在这优美的歌曲声中回答老师的问题呢?你们有谁知道这首乐曲时什么乐器演奏的呢?(学生回答问题)师:这首曲子是表现了怎样的蝴蝶形象呢?(学生讨论)师:哪位同学可以告诉老师一些有关《蝴蝶》和作曲者的有关故事呢?请你们轻轻跟着琴哼唱。(四)教师小结好了,孩子们。让我们这一只只可爱的蝴蝶随着优美的音乐,飞出教室,飞进自然中吧。
(一)、聆听设疑,导入新课:出示课件,师:她是谁?同学们喜欢她吗?主题曲喜欢吗?听大长今主题曲《呼唤》,提问:这首曲子是哪个民族的?看歌谱感受音乐特点。你对朝鲜族有哪些了解?学生回答。 (二)、朝鲜族相关知识介绍:师:同学们说的很好。教师总结。1、我国朝鲜族的分布情况。朝鲜族,中国的少数民族之一,中华民族的一部分。主要分布在黑龙江、吉林、辽宁三省。其中吉林省延边朝鲜族自治州多数居民使用朝鲜语和朝鲜文。杂居地区的朝鲜族通用汉语。2、朝鲜族乐器介绍(伽耶琴、长鼓)。(三)、《阿里郎》相关知识介绍及音乐特点:师:朝鲜族人民能歌善舞。朝鲜民族民谣中有一首历史非常悠久的民谣,这首民谣是《阿里郎》,这首民谣背后还有一个非常凄美的传说。1、介绍阿里郎的故事。在朝鲜的李朝中叶,名叫里郎的小伙子和成符的姑娘参加了反抗地主的暴动,暴动失败后,俩人躲进名叫水落山的深山里过上了与世隔绝却浪漫、幸福的生活。一天,里郎决定要为冤死的村民报仇血恨,越过山岭走向战场,成符唱着这首歌曲送别自己的爱人。
一、组织教学1、师:孩子们,让我们随着音乐,模仿老师的动作进教室。(音乐《蝴蝶》伴奏。)2、师生问好。二、谈话式引入教学。孩子们,大家喜欢舞蹈吗?老师也特别喜欢,看看照片上的舞者,你们认为是模仿哪种小动物呢?1、边听边让学生仔细看看这是哪种小动物?2、让我们来模仿一下它的动作,师生共同学习。三、今天老师就将带着大家走进这神奇的童话世界,去欣赏由挪威作曲家的《蝴蝶》。1、请大家认真倾听,感受一下乐曲所要表现的情绪,并充分发挥你的想象力,为乐曲取一个好听的名字。多媒体播放《蝴蝶》教师轻声的配上讲述,帮助学生理解内容。2、让我们来看看乐曲的创作者为乐曲取了一个怎样的名字。请大家看大屏幕,出示课题《蝴蝶》。
教学目标:1、使学生接触或熟悉泰国有代表性的民族音乐。使学生体会亚洲民族音乐所具有的,不同于其他地区音乐的艺术魅力。2、初步了解亚洲几个主要国家民族、民间音乐的主要特点,进而体会亚洲各地区音乐的鲜明的民族风格。3、了解亚洲民族音乐的基础知识。教材分析:同世界各民族音乐一样:亚洲民族音乐也是几千年来人类文化的积淀和艺术创造的集中反映,也具有很高的审美价值和认识价值。艺术源于生活,通过本单元的学习,使学生认识到,越是民族风格的艺术越具有国际性,要像保护名胜古迹一样,精心地珍视,保护民族的音乐文化。
启发导入、初步感悟。播放音乐《春之声》片段A师:听的过程中,可以随音乐轻轻东移动,用身体表示出你的感受。(随音乐做简单律动)听完后告诉老师:在这段音乐中同学们感受到了什么?想做什么?有没有想跳舞的冲动?情绪怎样?能不能听出是几拍子的?(活泼、欢快、节奏感强,是三拍子的)一般舞曲都是三拍子的。(三拍子引出圆舞曲。)介绍约翰?施特劳斯被称为“圆舞曲之王”,他一生做了五百多首乐曲。(讲解一下为什么是小约翰?施特劳斯,因为小约翰?施特劳斯的父亲是叫约翰?施特劳斯,为了加以区别所以加个小。他父亲也是个音乐家,著名的《拉德斯基进行曲》就是他父亲创作的。而小约翰?施特劳斯主要创作的是圆舞曲。下面就带大家来欣赏一下由奥地利音乐家小约翰?施特劳斯创作的《春之声》。)
一、组织并导入。在课的开始,我们先来举行一个唱唱我喜欢的民歌的小型民歌交流音乐会好吗?前些阶段,老师请你们回去找一找、唱一唱你喜欢的民歌,你们都去做了吗?师:今天老师给大家介绍一首赣南地区的民歌,你们想听一听吗?二、学唱歌曲《斑鸠调》1、初听歌曲:提问:歌曲的情绪怎样?表现的是怎样的音乐形象?教师:这首歌是赣南客家民歌《斑鸠调》,原名《上山调》 是流行于赣南的客家民歌,曲调原是赣南的一首茶歌。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。