甲方:天xxx事务所有限公司乙方:依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就委托设计事项,双方经协商一致,签订本合同,信守执行:甲方为乙方提供logo设计,服务内容如下:服务项目 服务内容 初稿交付期 收费标准基础Logo设计 客户提出对logo明确想法和需求后,设计师提供初稿3个,客户任选其一,在此基础上与设计师在线做进一步完善修改,合同期限内完成。 10个工作日 1000服务金额 合同总价:¥ 1000.00 大写: _ 零_万_ 壹 仟 零_佰_ 零 拾 零 元整 注:企业商标logo设计,可为文字、英文或图形设计 (文字和英文名称须由甲方提供),以上价格仅为满足其中一种设计要求的约定金额。为了使甲方为乙方提供更优质的在线设计服务,请细心阅读以下条款,这些条款规定了甲方与乙方之间的权利与义务:一、 关于知识产权约定甲方对版权的理解和定义是以《 中华人民共和国著作权法》 、 《中华人民共和国商标法》及《中华人民共和国商标法实施条例》为依据。 1、甲方对设计完成的作品享有著作权。乙方将委托设计的所有费用结算完毕后,甲方可将作品著作权转让给乙方(需另行签订转让合同)。但甲方享有署名权并保留用于参展,评选,展示的权利。乙方付清所有设计费后,甲方不得把此设计方案交给任何第三方使用。2、乙方在未付清所有委托设计费用之前,甲方设计的作品著作权归甲方,乙方对该作品不享有任何权利。
依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就委托设计事项,双方经协商一致,签订本合同,信守执行:一、合同内容和要求:_______________________________公司标志设计;二、费用:费用共计人民币¥_________元(大写:__________________)三、付款方式1.本合同签订后,甲方即向乙方支付合同总费用50%,即人民币¥_________元整;2.LOGO设计完成;甲方需向乙方支付合同余款,即人民币¥_________元整四、双方的责任与义务.1.乙方应按甲方要求按质按量完成相关设计工作。2.乙方需在规定时间______年_____月_____日至______年_____月_____日完成甲方公 司LOGO设计工作3.甲方有责任全力配合乙方开展本合同所规定的工作,并根据乙方需要提供相关资料。五、知识产权约定1.乙方对设计完成的作品享有著作权。甲方将委托设计的所有费用结算完毕后,乙方 可将作品著作权转让给甲方。2.甲方在未付清所有委托设计费用之前,乙方设计的作品著作权归乙方,甲方对该作品不享有任何权利。3.甲方在余款未付清之前擅自使用或者修改使用乙方设计的作品而导致的侵权,乙方有权依据《中华人民共和国著作权法》追究其法律责任。
一、委托事项甲方委托乙方为其公司进行 工作。 二、委托设计制作项目及费用项目费用:设计费用总共计:人民币 元,(大写 元整),总价不含税。 三、付款方式1、甲方需在合同签订当日支付项目总费用的50%给乙方,总计人民币 元,(大写: 元整)。2、乙方将全部设计工作完成,并由甲方确认后,经修改调整,甲方在确定设计方案后,需付清项目合同剩下余款,总计人民币 元,(大写: 元整)。乙方将设计源文件交与甲方。四、乙方设计制作的时间及交付方式1、乙方在收到甲方提供全部设计相关需要的资料之日起,乙方在 5 个工作日内提供设计方案给甲方确认。2、经反复修改,甲方最终确认设计方案后,甲方付给乙方余款,乙方提供给甲方设计源文件(可供印刷、后期制作的文件)3、设计完毕,甲方结清全部款项后,甲方如进行商标注册,注册不成功乙方可为其免费重新设计或修改。设计直到甲方满意为止。
根据《中华人民共和国广告法》,《中华人民共和国合同法》及国家有关法律、法规的规定,甲、乙双方在平等、自愿、等价有偿、公平、诚实信用的基础上,经友好协商,就甲方委托乙方设计、制作效果图事宜,达成一致意见,特签订本合同,以资信守。第一条 委托事项委托项目 数量(张) 单价(元/张) 分项总价(元)第二条 合同总价款及付款方式本合同设计费共计人民币 元(大写: ),输出打样等其他费用为人民币 元(大写: ),总价款为人民币 元(大写: )。前述费用已不包括税费,如有需要增加新角度,则在补充合同上另行商定。第三条 双方义务1、甲方负责在约定的时间内提供乙方设计所需的项目资料,并对其所提供的资料的合法性负责。2、甲方应按合同约定向乙方支付本合同价款。3、乙方应在 年 月 日前完成本合同约定的委托事项。4、在制作期间内,甲方发生设计方案变更,或要求修改已确认的效果图制作方案,且乙方已按原方案制作的,甲方应书面确认,并追加费用及时间。5、同一设计稿件若用于不同场合,甲方只付一次设计费。6、乙方设计的效果图应符合相关法律法规的规定,并不得侵犯他人的著作权和其它合法权益。第四条 违约责任1、甲方未能按合同约定付款的,甲方应承担违约责任。每逾期一日,甲方按合同总价款的0.1‰向乙方支付违约金。
第一条 本合同签订依据1.1《中华人民共和国合同法》、《中华人民共和国城市规划法》、《建设工程勘察设计市场管理规定》、《辽宁省城市规划设计行业收费标准》和《工程设计收费标准》。1.2国家及地方有关规划设计管理法规和规章。1.3规划项目批准文件1.4其他:第二条 设计依据2.1委托方给设计方的委托书或设计中标文件2.2委托方提交的基础资料2.3设计方采用的主要技术标准是:□《城市规划编制办法实施细则》□《城市用地分类与规划建设用地标准》(GBJ137-90)□《村镇规划标准》(GB50188-93)□《城市居住区规划设计规范》(GB50180-93)□《城市道路交通规划设计规范》(GB50220-95)其 他:第三条 合同文件的优先次序构成本合同的文件可视为是能互相说明的,如果合同文件存在歧义或不一致,则根据如下优先次序来判断:3.1合同书3.2中标函(文件)3.3委托方要求及委托书3.4投标书第四条 本合同项目的名称、规模、阶段及设计内容(根据行业特点填写)名 称 :规 模 :□ 用地 □ 人口 □ 其他阶 段 :□ 区域规划 □ 总体规划 □ 分区规划 □ 控制性详细规划 □ 修建性详细规划 □ 专项规划 □ 其他设计内容:
发包人委托设计人承担装修室内工程设计,经双方协商一致,签订本协议。第一条 本合同依据下列文件签订:1.1《中华人民共和国合同法》《建设工程勘察设计市场管理规定》。1.2国家地方有关建设工程勘察设计管理法规和规章。1.3建设工程批准文件。序号 分工程名称 建设规模 设计阶段及内容 估算总投资<万元) 费率% 设计费<万元)层数 建筑面积<m2) 公用部分 室内部分 施工图 1 合计 说明 1. 本设计不包括园林、厨房和智能化设计。2. 本设计不负责建报图和竣工图。第二条 本合同设计工程的内容:名称、规模、阶段、投资及设计费等见下表。
一、委托之事项:1) 甲方委托乙方为其公司设计 DM单页 。2) DM单页类别:3) 以下报价均含设计费1.尺寸:A4:双面:制作费用:250g 铜版纸1000张/1200元2.尺寸:A4:三折:制作费用:200g 铜版纸1000张/1500元3.尺寸:A3:单页:制作费用:300g 铜版纸1000张/3000元4.尺寸:B5:双面:制作费用:250g 铜版纸1000张/1000元二、委托设计费用总价为:人民币 元,(大写: )三、付款方式1) 甲方需在合同签订之日起两个工作日内将委托设计总费用的 %支付给乙方。2) 设计完成后,甲方需在三天内签名或盖章确认,确认后甲方应当即支付设计费用的全部余款(总费用的 %)。
二、市场开拓及客户的发展。一是根据自已所掌握的中小客户资源,去拜访和营销公司的产品;二是通过认识的核心大企业(如陕西高速集团、陕汽集团等)去深挖这些核心企业的上下游企业,拓展公司业务产品,争取找到一个突破点,最终能形成一个业务模式,带动核心企业众多的上下游与公司的业务合作;三是通过在西安金融圈的人脉资源(银行、信托、证券、创投公司等)向他们推荐公司业务产品,使金融圈的朋友帮其推荐和介绍适合公司业务产品的客户;四是通过与当地金融办及相关金融政府主管机构联系合作推荐公司业务产品,与金融办合作,争取能举行融资推荐会;五是根据细分市场情况和了相关园区企业的情况,上门拜访及推荐公司业务产品,争取业务的合作。
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
根据《中华人民共和国广告法》,《中华人民共和国合同法》及国家有关法律、法规的规定,甲、乙双方在平等、自愿、等价有偿、公平、诚实信用的基础上,经友好协商,就甲方委托乙方设计、制作 效果图事宜,达成一致意见,特签订本合同,以资信守。第一条 委托事项(具体见 )第二条 合同总价款及付款方式1、本合同设计费单价为人民币 元(大写: ),输出打样等其他费用为人民币 元(大写: ),总价款为人民币 元(大写: )。2、本合同签订后 个工作日内,甲方应向乙方支付合同总价款的 %,即人民币(大写): 作为预付款。3、乙方交付设计成果经甲方验收达到合同约定的设计要求和验收标准后 个工作日内,甲方向乙方支付合同结算余款。第三条 设计要求及验收标准:详见附件 第四条 双方义务1、甲方负责在约定的时间内提供以下资料,并对其所提供的资料的正确性负责:2、甲方应按合同约定向乙方支付本合同价款。3、乙方应在 年 月 日前完成本合同约定的委托事项 。4、乙方设计的效果图应符合相关法律法规的规定,并不得侵犯他人的著作权和其它合法权益。第五条 双方责任1、甲方须及时按约定方式支付乙方的服务费。2、甲方要求乙方在规定时间内完成工作,乙方若无故耽误完成时间或无法完成则甲方有权从服务费中扣除损失费。如果因乙方的耽误造成甲方损失的,甲方有权单方面停止服务。3、乙方设计错误或设计成果未达到本合同约定的设计要求及验收标准的,乙方应负责按甲方要求采取补救措施;造成甲方损失的,乙方应免收受损失部分的设计费,并根据损失程度向甲方支付赔偿金。
数学活动的内容具有生活性,这是指数学教育活动内容与幼儿的生活实际紧密相连,这些内容是幼儿所熟悉的,也是他们所能理解的,让他们感受到数学可以解决人们生活中遇到的问题。数字在我们的生活中无处不在,教师可以引导幼儿通过观察、发现周围环境中哪些地方、哪些物体上有数字,这些数字表示什么。例如:房屋上的门牌号码、书上的页码、汽车和汽车站上的数字、日历上的日期等等,它们分别表示着不同的意义。若能通过与幼儿生活实际相联系数学活动,让他们感到学习的内容是熟悉的,不仅能激发他们的兴趣,而且能让他们感受到数学就在他们身边是很有用的,并能激发幼儿更加注意,发现周围与数学有关的事务和现象。大班数学活动《设计门牌号码》就是运用生活中的序数经验,引导幼儿体验生活中数字的作用。
2学情分析本课属于“造型.表现”,学习领域。可爱幽默的动漫形象渗透了具象的造型知识,培养了学生的创新精神,丰富着孩子们的美好童年回忆。本课介绍了几种不同表现形式的动漫形象。联系生活原型与动漫形象,告诉学生动漫形像来源于现实生活,并通过文字和示范讲述动漫行象的造型手法(拟人化、变形、夸张等),引导学生大胆绘制简单的动漫形象。3 重难点1、教学重点:让学生了解动漫的风格,主要的设计手法,激发学生丰富的想象力,绘制出幽默、夸张、富有童趣的动漫形象。2、教学难点:让学生运用拟人、夸张、添加、变形、写实等方法,画出动漫形象
2学情分析二年级学生活泼可爱,思维独特,喜欢按照自己的想法自由地表现画面。好奇心强,爱表现自己,但动手能力较差,只能用简单的工具和绘画材料来稚拙地表现自己的想法。本课以学生亲切、熟悉的名字为题材,更好的激发学生的表现欲望和独创思维,让学生能够自信、大胆、自由地通过美术形式表达想法与感情。3重点难点重点:设计具有自己特色的名字。难点:能对名字的字形进行分析,巧妙地运用笔画特征进行想象设计。教学活动
2学情分析这是一个学生比较感兴趣的内容,通过学习不仅能提高学生的学习欲望,更希望能根据一句话或者一段话以画画的形式表现出来。3重点难点重点:了解绘画故事的表现特点,感受真、善、美。绘画自编故事的创作特点及步骤。难点:选材、构思设计、构图与绘制。
1. 监管力度不一,学习效率参差。 线上学习,有部分家长很重视,为孩子提供了安静的学习环境,部分学生也很自律,能按时听课、积极思考、完成各项课内课外练习。但不排除存在家长无条件提供好的学习环境,学生缺乏自控能力的现象。我校生源一大部分是新居民子女,线上教学的中后期,学生家长绝大部分外出务工,学生的学习几乎处于“放任自流”的状态。孩子缺少大人的监督,不自觉更体现无疑,上课不专心,不记笔记,甚至不上课的也都存在,更别说语文的口头朗读、背诵作业和笔头的听写作业等的落实了。学生上课的参与率不保障,学校效率也参差不齐,两级分化明显。
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.