一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
查纠整改环节以来,我县政法队伍教育整顿紧扣清除害群之马、整治顽瘴痼疾“两大任务”,突出政治引领、锚定目标方向,坚持实事求是、上下联动,高标准狠抓问题整改有节有序,高精度聚焦顽疾整治有为有效,高效能推进建章立制有法有据,查纠整改环节取得较好效果。面对已取得的工作成绩,各级各单位要站在讲政治的高度,对照全国教育整顿办和中央第X督导组部署要求,持续紧盯线索核查、顽瘴痼疾整治两个短板,以自我革命、刀刃向内的勇气检视整改问题
一、进一步增强政治觉悟,提高政治站位查纠整改环节以来,我县政法队伍教育整顿紧扣清除害群之马、整治顽瘴痼疾“两大任务”,突出政治引领、锚定目标方向,坚持实事求是、上下联动,高标准狠抓问题整改有节有序,高精度聚焦顽疾整治有为有效,高效能推进建章立制有法有据,查纠整改环节取得较好效果。面对已取得的工作成绩,各级各单位要站在讲政治的高度,对照全国教育整顿办和中央第X督导组部署要求,持续紧盯线索核查、顽瘴痼疾整治两个短板,以自我革命、刀刃向内的勇气检视整改问题,深入剖析问题产生的根源,靶向施策,针对性制定整改方案和工作措施,着力破解思想不到位、自查自纠不主动、线索核查不彻底等瓶颈问题,扎实抓好线索清零、提升办案质效、坚持深挖彻查等重点工作,真正把问题整改的过程转化为推进工作落实的过程,推动教育整顿扎实开展、取得更大成效。
查纠整改环节以来,我县政法队伍教育整顿紧扣清除害群之马、整治顽瘴痼疾“两大任务”,突出政治引领、锚定目标方向,坚持实事求是、上下联动,高标准狠抓问题整改有节有序,高精度聚焦顽疾整治有为有效,高效能推进建章立制有法有据,查纠整改环节取得较好效果。面对已取得的工作成绩,各级各单位要站在讲政治的高度,对照全国教育整顿办和中央第X督导组部署要求,持续紧盯线索核查、顽瘴痼疾整治两个短板,以自我革命、刀刃向内的勇气检视整改问题,深入剖析问题产生的根源,靶向施策,针对性制定整改方案和工作措施,着力破解思想不到位、自查自纠不主动、线索核查不彻底等瓶颈问题,扎实抓好线索清零、提升办案质效、坚持深挖彻查等重点工作,真正把问题整改的过程转化为推进工作落实的过程,推动教育整顿扎实开展、取得更大成效。
孩子们是国家的未来祖国的希望,我们对他们的合法权给予特殊呵护,也是一项具有挑站性的工作,这需要全社会共同参与到其中,我们每一个人一起完成,共同维护未成年人合法权益,更好的履行自己的责任和义务,让孩子们活泼健康快乐的成长,成为一代强人,将来为祖国做出更大的贡献。
孩子们是国家的未来祖国的希望,我们对他们的合法权给予特殊呵护,也是一项具有挑站性的工作,这需要全社会共同参与到其中,我们每一个人一起完成,共同维护未成年人合法权益,更好的履行自己的责任和义务,让孩子们活泼健康快乐的成长,成为一代强人,将来为祖国做出更大的贡献。
尊敬的老师、亲爱的同学们:大家早上好!大家知道今天是什么日子吗?今天是第20个“全国中小学生安全教育日“。从1996年起,我们国家确定每年3月份最后一周的星期一为“全国中小学生安全教育日”。今年的安全教育主题是“我安全、我健康、我快乐”。这一周也是第8个“福建省学校安全教育周“。今天我国旗下讲话的题目就是“我的安全我能行”。校园是人员密集的场所,校园安全关系到每个家庭的幸福。因此,创建平安校园是每一名老师和同学的共同心愿。大家还记得,XX年9月26日下午,昆明市北京路明通小学发生一起踩踏事故,造成学生6人死亡、26人受伤。事情的起因是头一天下午,该小学体育老师将两块体育教学使用的海绵垫子临时靠墙放置于学生午休宿舍楼一楼单元过道处。26日14时许,学校起床铃拉响后,该小学一、二年级午休学生起床后返回教室上课,由于靠墙的一块海绵垫平倒于一楼过道,造成通道不畅,先期下楼的学生在通过海绵垫时发生跌倒,后续下楼的大量学生不清楚情况,继续向前拥挤造成相互叠加挤压,导致严重伤亡。专家研究和实践证明:通过安全教育,强化安全管理,提高广大师生的自我保护能力,80%的意外伤害是完全可以避免的。
余幼时即嗜学。家贫,无从致书以观,每假借于藏书之家,手自笔录,计日以还。天大寒,砚冰坚,手指不可屈伸,弗之怠。录毕,走送之,不敢稍逾约。以是人多以书假余,余因得遍观群书。既加冠,益慕圣贤之道,又患无硕师名人与游,尝趋百里外,从乡之先达执经叩问。先达德隆望尊,门人弟子填其室,未尝稍降辞色。余立侍左右,援疑质理,俯身倾耳以请;或遇其叱咄,色愈恭,礼愈至,不敢出一言以复;俟其欣悦,则又请焉。故余虽愚,卒获有所闻。
余幼时即嗜学。家贫,无从致书以观,每假借于藏书之家,手自笔录,计日以还。天大寒,砚冰坚,手指不可屈伸,弗之怠。录毕,走送之,不敢稍逾约。以是人多以书假余,余因得遍观群书。既加冠,益慕圣贤之道,又患无硕师名人与游,尝趋百里外,从乡之先达执经叩问。先达德隆望尊,门人弟子填其室,未尝稍降辞色。余立侍左右,援疑质理,俯身倾耳以请;或遇其叱咄,色愈恭,礼愈至,不敢出一言以复;俟其欣悦,则又请焉。故余虽愚,卒获有所闻。
马说唐 韩愈世有伯乐,然后有千里马。千里马常有,而伯乐不常有。故虽有名马,祗辱于奴隶人之手,骈死于槽枥之间,不以千里称也。马之千里者,一食或尽粟一石。食马者不知其能千里而食也。是马也,虽有千里之能,食不饱,力不足,才美不外见,且欲与常马等不可得,安求其能千里也?策之不以其道,食之不能尽其材,鸣之而不能通其意,执策而临之,曰:“天下无马!”呜呼!其真无马邪?其真不知马也!
①我要笑遍世界。②只有人类才会笑。树木受伤时会流“血”,禽兽会因痛苦和饥饿而哭嚎哀鸣。然而,只有我才具备笑的天赋,可以随时开怀大笑。从今往后,我要培养笑的习惯。③笑有助于消化,笑能减轻压力,笑是长寿的秘方。现在我终于掌握了它。④我要笑遍世界。
国际奥委会宣布这一决定后一年,便是2016年的里约奥运会。在2016年8月下旬举办的里约奥运会闭幕式上,奥运历史上第一个“追思时刻”出现了。这个环节被放在文艺表演开始之初,由男声朗诵巴西传统的葡萄牙语诗歌《思念》,体育场内的投影则随着朗读声的韵律演绎着代表“思念”的葡萄牙语文字。从2016年里约奥运会开始,闭幕式的“追思时刻”环节就被固定了下来。2018年的平昌冬奥会选择用类似葬礼的形式展示,2021年举办的东京奥运会则展现了日本的“物哀文化”。
人类的语言具有两大功能,可以用一个词语来概括——表情达意:“表情”就是表达情感,“达意”就是传递信息。但在语言使用的过程中,我们往往会重视信息交流,而忽略了情感沟通,这和语言中情感表达的特殊性是有很大关系的。
余友李公择,少时读书于庐山五老峰下白石庵之僧舍。公择既去,而山中之人思之,指其所居为李氏山房。藏书凡九千余卷。公择既已涉其流,探其源,采剥其华实,而咀嚼其膏味,以为已有,发于文词,见于行事,以闻名于当世矣。而书固自如也,未尝少损。将以遗来者,供其无穷之求,而各足其才分之所当得。是以不藏于家,而藏于其故所居之僧舍,此仁者之心也。
阅读下面一首唐诗,完成下面小题。送李侍御赴安西①高适行子对飞蓬,金鞭指铁骢②。功名万里外,心事一杯中。虏障③燕支④北,秦城太白东⑤。离魂莫惆怅,看取宝刀雄!【注】①安西;即安西都护府,治所在今新疆库车县。②骢(cōng):毛色青白相间的马。③虏障:类似碉堡的防御工事。④燕支:山名,在今甘肃。⑤太白东:指秦岭太白峰以东的长安。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。