1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
2、在操作及游戏活动中,感受对应的关系。 3、乐于参与集体游戏活动。 活动准备: 1、教具准备:“小熊一家”“大象运木头”“方方的搭” 2、学具准备:“大象运木头”;“方方的塔”。 3、《操作册》第1册第10页。 活动过程: 1、出示“小熊一家”导入。 今天小熊一家人又要来我们小二班了,我们来看一看。(熊爸爸、熊妈妈、熊哥哥、熊姐姐、熊宝宝)
2.能观察、比较出相同的颜色、形状、大小。 3.愿意参加操作活动,并用语言表达自己的操作过程和结果。 活动准备: 小房子图片(3张),小动物图片(小兔子、小熊、小猫),幼儿操作卡片 活动过程: 1.故事的方式,引出课题 森林里住着3只小动物他们非常的贪玩,每次一跑出去玩就不知道回家了。每次他们 妈妈都是东找西找的,有好几次都急的哭了。可是这3只小动物啊,还是不知道改正这个错误。这件事情啊,被森林里面的智慧爷爷知道了非常气。于是,智慧爷爷就告诉这3只小动物,:“你们不听妈妈的话,每次出去玩都不知道回家,你们做错了事情,还不知道改正,那就要受到惩 罚了。我已经把你们回家的路给没收了,每条路只留了前面几块砖,除非你们找出规律并且正确的把砖铺对了,才能再回到家里。”3个小动物一听,就嗷嗷大哭起来,这可怎么办啊。后悔自己没有听妈妈的话早点回家,他们呀就做在一起想啊想啊,想怎么把回家的路铺好,可是三个小动物伤透了脑筋也想不出来,一直在哭着,就想请你们来帮帮他们回到家,小朋友愿意帮忙吗? 评析:用故事导入的形式,设置问题,去帮小动物来铺路引起幼儿铺路的兴趣,为整个活动的有序开展奠定了基础。 2.启发幼儿观察小路,并发现其中的排列规律。 (1)出示接龙卡:小兔铺路用的砖头上有什么图形?每块砖上面图形的颜色一样吗? (2)教师示范铺路,小兔铺的路是黄色和黄色手拉手,接下来该铺哪一块砖?为什么铺这块? (3)教师小结:原来小兔铺的路是按照一样颜色和一样颜色手拉手的。 评析:这一环节教师以合作者的身份与幼儿共同活动,通过教师的操作,让幼儿来发现其图形接龙的规律知道相同颜色的图形接在一起。
2、通过操作活动,发展和探索简单的排序规律。 3、体验操作活动的快乐。 活动准备: 1、教具准备:小白兔玩偶一个,彩色项链(3条),小星星。 2、学具准备:“小星星”。 3、《操作册》第一册第7页。 活动过程: 一、导入活动,引起兴趣。 咦,谁来啦?(小白兔)今天小白兔到我们小(2)班想请大家帮一个忙,让张老师来问一问。 小白兔:今天是我妈妈的生日,我要去帮妈妈买一条项链,你们帮我一起去挑一条漂亮的项链送给我妈妈,好吗? 二、集体活动。
2、 在游戏中,尝试用筷子夹食物,体验美味食物带来的乐趣,并会分享食 物。3、 激发幼儿使用筷子的乐趣。活动准备:1、 红、黄、蓝、粉四种颜色图案的筷子。2、 四种颜色的插筷筒,三种图案的插筷筒。3、 各种水果切成块。4、 人手一个碟子,一双筷,四个插筷筒。5、 录音机、磁带。重点:配对、分类及使用筷子。难点:使用筷子。活动过程:一、 导入情景1、(出示小熊)小朋友,你们好!今天我想邀请你们去我家做客,你们愿意吗? 2、但是我遇到困难了,你们帮帮我,好吗?二、学习配对1、(出示筷子)你们看,这是什么啊?2、小熊想请我们小朋友给筷子找好朋友,请你们帮他找找好朋友,好吗? 3、请你从后面的桌子上找到一支一模一样的筷子做他的好朋友,好吗? 4、现在请你们从小椅子下面找到筷子,然后去后面找到他的好朋友! 5、幼儿活动――配对。6、 “xxx,请你说说,你为什么找他做好朋友?”(请2-3名幼儿)7、 原来你们是因为他们的颜色和图案一样,才找他们做好朋友的,你们的小眼睛可真亮啊!三、学习分类1、 那你找到筷子的家在哪里吗?2、 <BR><P></P>(出示插筷筒)你们看,这就是筷子的家,它叫插筷筒。它们有什么不同啊?(颜色)这个是什么颜色啊?那这个呢?那就请你把你的筷子送回家,好吗?待会请你们轻轻地把筷子送回家,要有秩序,一个一个放,千万不要把他们送错家了。3、 幼儿活动――分类。4、 请你们看看筷子的家找对了吗?(如找错了,请一名幼儿再找,并说说为什么?)5、 哇,我们小朋友可真棒啊!把红筷子送到了红色的插筷筒里,把黄筷子送到了黄色的插筷筒里,把蓝筷子送到了蓝色的插筷筒里,把粉色的筷子送到了粉色的插筷筒里,真厉害!6、 但是,筷子想找新家了。瞧!这就是他们的新家,他们有什么不同啊?(图案)这个是什么图案?这个呢?对了,一个上面是花花的,一个有蝴蝶,还有一个上面有绿色的图案。7、 现在请你给这些筷子找新家。你喜欢什么样的筷子,你就轻轻地把他从老家拿出来,然后再把他送到新家,好吗?要一个一个有秩序,不然你把筷子弄疼了,他就不理你了。8、 幼儿活动――再次分类。9、 请你们看看筷子的家找对了吗?(如找错了,请一名幼儿再找,并说说为什么?) 10、哇!你们的小眼睛可真亮啊!比孙悟空还厉害啊!
2、正确判断并找出一模一样的物品。 活动准备: 教具:橙边大卡片4张、红边大卡片16张(4组,每组4张)、小猴大卡片1张、磁铁(自备)。 幼儿材料:<超市购物>游戏图、<购物单>卡片。活动过程:一、引入活动 1、介绍新朋友。 师:“小朋友,你们看今天有一位客人来这里,它是谁?” 2、欢迎新朋友。 师:“哦!我们对它表示欢迎吧!”(师带领幼儿一起鼓掌) 3、为新朋友起名字。 师:(拿起小猴子大卡片遮住脸,声音稍变,模仿小猴子)说:“你们好,小朋友!你们认识我吗?知道我叫什么名字吗?帮我取一个吧?”(老师挑一个幼儿起的名字运用,如‘花花’等)
【活动准备】1、课前做老鹰捉小鸡的游戏。2、磁性教具:小房子1座,小白兔1只,许多萝卜(个数与幼儿人数相等)。3、小篮子1只。 【教学过程】一、开始部分: 语言导入:“今天老师给小朋友讲一个新故事,小朋友要认真听,我们来比一比哪位小朋友听得最认真。” 二、基本部分:1、教师边讲述故事《小兔拔萝卜》,边演示磁性教具,帮助幼儿认知“1”和“许多”。 教师:“在很远很远的地方有一座小房子(出示磁性教具小房子),房子里面有一位小主人,你们看它是谁?(出示磁性教具小白兔)。 小朋友:“小白兔” 教师:“这是几只小白兔?” 小朋友:“1只” 教师出示萝卜问:“这只小白兔在干什么呀?”(出示磁性教具萝卜)。 小朋友:“拔萝卜” 教师:“小白兔的萝卜地里有多少萝卜?” 小朋友:“许多萝卜。”
目标: 1、乐意参与3以内的数数活动,初步理解数的实际意义。 2、体验去朋友家做客的快乐。 准备: 1、布置家的场景:物品按数量1、2、3一组分散放于三个柜中。1——3数字宝宝图片(粘于椅子上) 2、水果一篮 3、歌曲:看朋友、找朋友 过程: 1、带礼物去看朋友 交代:今天去看朋友,但要带什么礼物去呢? 模仿开汽车,边唱歌:看朋友,到数字宝宝家。 敲门,进去,和数字宝宝打招呼。 个别提问:你在和谁打招呼?
2.指导幼儿依据不同标准对物体进行分类。活动准备1.一套动物图卡,其中有一张是汽车图卡。2.苹果、梨、橘子、香蕉四种水果若干。3.不同颜色、大小、形状的积木若干。 活动过程1.参考提问:请幼儿观察图卡并说出图卡上都有些什么?请幼儿将自认为不对(它和这些图卡不一样或不是一类)的图卡拿出来,并说出为什么。
活动准备: 1、大棋谱两副,黑白棋子若干。 2、红、黄、绿、紫队标志一份,每队准备一副棋谱,若干黑白子。 3、数字卡片“6”以内加减算式若干。 活动过程: 一、分队推选小队长 “分成四队,每队4个孩子,自己选出小队长” 二、黑白棋对抗赛 1、规则:每队选2名小队员先后参加比赛,第一名队员用黑子,第二名队员用白子,要求黑子和白子合起来我给你的数。 2、幼儿比赛,教师总结比赛情况。
2、培养按数量归类的能力。 3、通过游戏,提高对数学活动的兴趣。 活动准备: 有1、2、3个斑点的瓢虫图片若干;分别粘有1、2、3个圆点的树叶3片;小纸虫若干;儿歌录音:小瓢虫。 活动过程: 一、游戏导入 师幼共同玩手指游戏:小瓢虫。 二、利用图片,练习手口一致数3以内的数。 通过数瓢虫身上的斑点及瓢虫数,巩固数数1、2、3。
【活动目标】1.发展幼儿对颜色、6以内数量的感知。2.幼儿能尝试简单的分类。3.体验快乐的情绪。 【活动准备】 红、黄、绿花若干;红、黄、绿圆点即时贴若干;白色纸花,花心分别为红、黄、绿,花瓣为4、5、6片;音乐磁带《春天》《找朋友》;贴有数字4、5、6的三个花篮。
一、指导思想 以学校总体工作计划为指导,以深入开展素质教育和创新教育为目标,围绕学校主题教育活动,提高学生的思想素质和科学文化素质、以爱国主义教育为主线,以学生的行为习惯的养成为主要内容,注意培养和提高学生的基本道德。规范班级日常管理工作,开展丰富而有意义的少先队活动,努力探索班级工作的新特色。
作为一一名任课教师,我们或许都有过这样的体验,每当上完一节好课,会让你有意犹未尽之感,全身都会感到舒爽之至。而往往公开课更容易达到这样的境界。想想为什么,一个很重要的原因就是我们无形中做到了“懂”、“透”、“化”。 总之,我们在处理教材上真正做到“懂”、“透”、“化”,真正做到“钻进去,走出来”,就会达到创设教材研究的理想境界。
生:环境承载力是指环境能持续供养的人口数量。师:对了。但是有同学仍然会感到这是一个很抽象的概念。下面我们具体来了解什么是环境承载力。我们可以从两个部分去理解:一、环境,它主要是指环境的单个要素(如:土地、水、气候、植被等。)及其组合方式。二、是承载力,它指在特定的条件下,具体某事物能承受的某种活动的最大值。那环境承载力的科学定义是怎样表达的呢?生:环境承载力是指某一时期,某种状态条件下,某地区环境所能承受的人类活动作用的阈值。师:很对。 我们可以用一个生动的例子来说明。一只木桶里面的水的多少在底面积固定不变的情况下是由哪块木板来决定?生:最短的那块。师:确实如此。这就是我们平常所讲的 “木桶效应”。那影响环境承载力的大小也是由环境个要素里面最紧缺的那个要素来决定的。下面我们用一个例子来印证一下。
1.澳大利亚混合农业地域在生产结构、经营方式、科技应用、农业专业化和地域化等方面有哪些特点?2.在澳大利亚混合农业地 域形成的过程中,有哪些区位因素在起作用?学生发言,教师适当引导、评点并作讲解。[教师提问]:那么,澳大利亚的墨累—达令盆地的区位因素有什么不足之处?知识拓展:课件展示澳大利亚大分水岭的雨影效应的形成原理及东水西调示意图。[教师讲解]:澳大利亚东南部受大分水岭的影响,降水集中于大分水岭的东侧,在其西侧形成山地的雨影效应,降水丰富地区与农业生产地区分布不一致,灌溉成为澳大利亚农牧业发展的限制性条件。因此,澳大利亚对水利工程建设很 重视,东水西调促进了墨累—达令盆地农牧业的发展。[课堂小结]:这节课我们学习了农业区位选择的基本原理。 通过学习我们了解到,农业的区位选择实质上就是对农业土地的合理利用。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。