2、测量。各个组的成员根据上面的设计方案在小组长的带领下到操场测量相关数据。比一比,哪组最先测量完并回到教室?(二)根据测量结果计算相关物体高度。时间为2分钟。要求:独立计算,并填写好实验报告上。(三)展示测量结果。时间为3分钟。各组都将自己计算的结果报告,看哪些同学计算准确些?(四)整理实验报告,上交作为作业。此活动主要是让学生通过动手实践,分工合作,近一步理解三角函数知识,以及从中体会学习数学的重要性,培养学生学习数学的兴趣和激情,增强团队意识。四、小结:本节课你有哪些收获?你的疑惑是什么?(2分钟)1、 知识上:2、 思想方法上:五、板书设计1、目标展示在小黑板上2、自主学习的问题展示在小黑板上3、学生设计的方案示意图在小组展示板上展示
说明:8.2.1在表示范表演的点画空心圆圈,表不包括这一点,表示大时就往右拐;图8.2.2在表示-2的点画黑点表示包括这一点,表示小时往左拐。3,讲解补充例题,例1:判断:①x=2是不等式4x<9的一个解.()②x=2是不等式4x<9的解集.()例2、将下列不等式的解集在数轴上表示出来:(1)x<2(2)x≥-2(设计意图:例1是让学生理解不等式的解与不等式的解集。联系与区别,例2揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)4.巩固练习:课本44页练习2,3题5.归纳总结,结合板书,引导学生自我总结,重点知识和学习方法,达到掌握重点,顺理成章的目的。6.作业:课本49页习题1,2题
一、说教材:等腰三角形是北师大版初中八年级下册数学教材第一章第一节的教学内容,本节是轴对称图形的应用,是研究等腰三角形的开篇。通过本章节的学习,可以丰富和加深学生对已学图形的认识,为以后的图形学习和证明打好基础。本节在编排上考虑学生的认知规律,从学生容易接受的动手操作找规律开始到几何画板的验证再过渡到几何证明与应用。根据课程标准,确定本节课的目标为:【教学目标】1.知识与能力 理解并掌握等腰三角形的定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题.2.过程与方法通过动手操作、动态演示等方法,培养学生思考探究数学的能力;通过例题与练习,提高学生添加辅助线解决问题的能力。3.情感、态度与价值观 在探索等腰三角形性质的过程中体会轴对称图形的美,感受数学与生活的联系;在例题教学中,感受数学之美;培养学生分析解决问题的能力,使学生养成良好的学习习惯.
1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。2.了解一元一次不等式组及解集的概念。3.会利用数轴解较简单的一元一次不等式组。4.培养学生分析、解决实际问题的能力。5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。四、教学重、难点分析教学重点:1.理解有关不等式组的概念.2.会解由两个一元一次不等式组成的不等式组.教学难点:在数轴上确定解集.五、教学手段分析本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?在这一环节中的设计:(1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;(2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;(3) 组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。
一、说教材《分式的加减法》是本册教材第三章《分式》重要内容,是进一步学习分式方程、反比例函数以及其它数学知识的基础,同时也是学习物理、化学等学科不可缺少的工具。与其它数学知识一样,它在实际生活中有着广泛的应用。学习分式的加减法并熟练地进行运算是学好分式运算的关键,为学生综合运用多种运算法则拓宽了空间,有利于学生对双基的掌握,在综合运用多种运算法则的过程中,逐渐形成运算能力。同时本节课的教学难度有所增加,学生通过观察、类比、猜想、尝试等一系列思维活动中,发现规则、理解规则、应用规则。考虑到以上这些因素,确定本节课的目标和重点、难点如下:(一)说教学目标:1.知识与技能目标:理解并掌握异分母分式加减法的法则;经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学生在学习中转化未知问题为已知问题的能力;进一步通过实例发展学生的符号感。
Ⅵ.活动与探究某种“15选5”的彩票的获奖号码是从1~15这15个数字小选择5个数字(可以重复),若彩民所选择的5个数字恰与获奖号码相同,即可获得特等奖.小明观察了最近100期获奖号码,发现其中竟有51期有重号(同一期获奖号码有2个或2个以上的数字相同),66期有连号(同一期获奖号码中有2个或2个以上的数字相邻).他认为获奖号码不应该有这么多重号和连号,获奖号码可能不是随机产生的,有失公允.小明的观点有道理吗?重号的概率大约是多少?利用计算器模拟实验可以估计重号的概率.[过程]两人组成一个小组,利用计算器产生1~15之间的随机数.并记录下来,每产生5个随机数为一次实验,每组做10次实验,看看有几次重号和连号.将全班的数据汇总集中起来,就可估计出1~15之间的整数中随机抽出5个数出现重号和连号的概率.
回顾整节课的设计,我主要着力于以下三个方面:1.关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:(1)通过“合成代数式”、“赋予分式实际意义”两个活动,激发兴趣,吸引学生参与活动;(2)通过“互举例子”、“填表探究”两个活动,鼓励学生主动参与活动;(3)通过“应用新知”这个环节,促进学生参与活动。2.关于教与学方法的选择:我在设计中始终关注:如何精心组织活动,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导——发现教学法”,具体做法如下: (1)用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;(2)加强应用性,通过“应用新知”、“深化拓展”两个环节,密切分式与现实生活及其他学科的联系,发展数学应用意识,突出分式的模型思想。
1、数数格子,认清方向(完成想想做做第1题)设计意图:本题在于让学生认清平移的方向和距离,感受平移的不同方法。在教学中,让学生自己独立思考完成,自由发言。鼓励学生说出不同的平移方法。2、小试牛刀(完成想想做做第2题)设计意图:本题主要是让学生掌握按要求画平移后的图形。这是本节课的难点。在教学中,先让学生独立画图,教师巡视作图情况,对有困难的学生给予指导。在学生完成作图后,投影部分学生的作品,交流平移的过程与方法。最后在多媒体课件上展示画法。.3、平移的运用(“想想做做”第3题)设计意图:本题在于使学生学会运用平移的知识画平行线,体会平移的价值。(四)课堂小结,升华提高提问:今天你有哪些收获?设计意图:以问题为载体,引领学生对本节课的归来总结。让学生再次理解图形的斜向平移可转换成横向平移和竖向平移。
五、说课件设计及板书随着教育现代化的发展,多媒体课件在课堂中辅助教师授课,帮助学生练习,已成为非常重要的教学辅助工具之一。在本节课的授课过程中,本人也使用了多媒体教学课件。课件在设计上遵循实用性原则、辅助性原则、创新性原则,紧紧围绕教学目标,服务于课堂教学,设计科学合理,制作精美细致;课件的有效使用很好地优化了课堂,极大地扩充了容量,有力地突出了重点,轻松地化解了难点;使学生学习兴趣浓郁,使教学效率大大提高;特别是在演示多边形对应角相等的设计,使这一教学环节变得更直观、更高效、更方便,让学生轻松地进行探究,很好地保护了学生的学习热情,方便了教师的策略实现。在授课过程中,我又不是完全依赖于多媒体课件,而成了课件反映员;我充分发挥教师的主导作用,合理地利用黑板板书有关内容,灵活动配合多媒体课件为学生呈现有关知识点,以弥补课件的不足。
学生在观察和讨论后,由师生合作,归纳出中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.让学生尝试自己证明△ABC与△A′B′C′全等,然后在教师的引导下相互交流。接着,对“轴对称”和“中心对称”的概念进行比较,我采用列表格的方式,从三个方面分别让学生去填,意图让学生把新学的知识及时纳入到已学的知识体系中去。4、灵活运用体会内涵1)首先讲授例1。(1)选择点O为对称中心,画出点A关于点O的对称点A′;(2)选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(3)已知四边形ABCD和O点,画出四边形ABCD关于O点的对称图形。在老师的引导下,共同完成作图,并规范画图方法:要画一个多边形关于已知点的对称图形,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可。在本次活动中,意图利用中心对称的性质进行作图,加强对中心对称性质的理解。
三、达标测试这一环节,我共设计了5道题,题型有选择、填空、解答。这些题都来自于课后习题,是课后习题的重组和整合,能够很好地考查学生对本节课的掌握情况。这一环节设计以多变的题型呈现,总体还是以基础题为主,以课后习题为主要内容设计,可把课后习题改编成填空、选择、计算、解答、证明等。这些题的设计要有典性、代表性,要紧跟时代步伐。80%-90%的学生能做全对,题量不能超过6道题。学生答题时间不能超过8分钟。四、拓展延伸这一环节以综合运用推论的一道计算题呈现的。旨在让学生在课后巩固对推论的理解,另一方面也为后面学习相似三角形做铺垫。以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
(三)解释、应用和发展问题4:如果测量一座小山的高度,小山脚下还有一条河,怎么办? (教师巡视课堂,友情帮助 ,让学生参照书本99页,用测角仪测量塔高的方法.这个物体的底部不能到达。)(1)请你设计一个测量小山高度的方法:要求写出测量步骤和必须的测量数据(用字母表示),并画出测量平面图形;(2)用你测量的数据(用字母表示),写出计算小山高度的方法。过程: (1) 学生观察、思考、建模、自行解决(3) 学生间讨论交流后,教师展示部分学生的解答过程(重点关注:1.学生能否发现解决问题的途径;学生在引导下,能否借助方程或方程组来解决问题;学生的自学能力.2.关注学生克服困难的勇气和坚强的意志力。3.继续关注学生中出现的典型错误。)(设计意图: 让学生进一步熟悉如何将实际问题转化成数学模型,并能用解直角三角形的知识解决简单的实际问题,发展学生的应用意识和应用能力。
准备200张卡片,在上面分别写上1,2,3,…,200,将卡片装入布袋里.第一次从布袋中盲目地取出一张,把号码记下,这个号码就算是消息的发布者,暂时不放回。第二次,从布袋中盲目取出三张,记下号码,这算是第一批听到消息的三个人,留一张暂时不放回(这张卡片代表下一次传播消息的人),另两张放回。把第一张卡片放回,然后第三次从布袋中盲目取三张卡片,记下号码.这算是第二批听到消息的三个人.留一张暂时不放回,其余两张放回.把第二次摸出的并暂时留下的一张卡片收回,然后第四次从布袋中摸……看一下,15次后,有没有被重复摸出的?上述消息传播问题是很有实用价值的,比如,在医疗事业中,必须十分注意疾病的重复感染问题,因为传染病的传播就像消息传播一样,既然重复听到消息的可能性是很大的,当然重复感染的可能性也是很大的。
(三)如图, 中, ,AB=6厘米,BC=8厘米,点 从点 开始,在 边上以1厘米/秒的速度向 移动,点 从点 开始,在 边上以2厘米/秒的速度向点 移动.如果点 , 分别从点 , 同时出发,经几秒钟,使 的面积等于 ?拓展:如果把BC边的长度改为7cm,对本题的结果有何影响?(四)本课小结列方程解应用题的一般步骤:1、 审题:分析相关的量2、 设元:把相关的量符号化,设定一个量为X,并用含X的代数式表示相关的量3、 列方程:把量的关系等式化4、 解方程5、 检验并作答(五)布置作业1、请欣赏一道借用苏轼诗词《念奴娇·赤壁怀古》的头两句改编而成的方程应用题, 解读诗词(通过列方程,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?本题强调对古文化诗词的阅读理解,贯通数学的实际应用。有两种解题思路:枚举法和方程法。
注意强调概念理解不到位的方面:① tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”,若用三个字母表示角则“∠”不能省略,如“∠ABC的正切表示为tan∠ABC”;② tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③ tanA不表示“tan”乘以“A”。通过给出直角三角形的任两边的长,让学生求∠A,∠B的正切及时强化学生对概念的3、正切函数的应用理解通过实际问题的解答进一步了解梯子的倾斜程度、坡度与正切函数的关系;对学生进行正切的变式训练,让学生理解不管角的位置如何改变,只要角的大小不变则其正切值是不变的。练习的安插注意梯度,让不同的学生有不同的发展。4、最后小结本节课的知识要点及注意点五、达标测试具体思路:把几个问题分为四个等级,方便对学生的了解;通过评价让学生对自己的学习也做到心中有数。
教学媒体设计充分利用多媒体教学,将powerpoint、《几何画板》两种软件结合起来制作上课课件。制作的课件,不仅课堂所授容量大,而且,利用作二次函数图像的动画性,更加形象的反映出作图的过程,增加数学的美感,激发学生作图的兴趣。教学评价设计本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数y=ax2的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。
设计说明:设计这组测验为了反馈学生学习情况,第1题较简单,也是为了让提高学生学习士气,体会到成功的快乐;第2题稍微有点挑战性,利用直角三角形外心位置规律解答,也满足不同层次学生的不同需求.教师可们采用抢答方式调动学生积极性,学生抢答,师生共同反馈答题情况,教师最后出示正确答案并做总结性评价.环节十:布置作业课件演示: 拓展延伸1.思考:经过4个(或4个以上的)点是不是一定能作圆?2.作业:A层 课本118页习题A组1,2,3; B层 习题B组.设计说明:设计第1题的原因保证了知识的完整性,学生在探究完三个点作圆以后,肯定有一个思维延续,不在同一直线上三个点确定一个圆,四个点又会怎样?四个点又分共线和不共线两种情况,不共线的四点作圆问题又能用三点确定一个圆去解释,本题既应用了新学知识,又给学生提供了更广泛地思考空间.第2题,主要是让学生进一步巩固新学知识,规范解题步骤. 在作业设计时,既面向全体学生,又尊重学生的个体差异,以掌握知识形成能力为主要目的.
(设计意图:因为圆中有关的点、线、角及其他图形位置关系的复杂,学生往往因对已知条件的分析不够全面,忽视某个条件,某种特殊情况,导致漏解。采用小组讨论交流的方式进行要及时进行小组评价。)(3) 议一议( 如图,OA、OB、OC都是圆O的半径∠AOB=2∠BOC, 求证:∠ACB=2∠BAC。)(设计意图:通过练习,使学生能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。)(三)说小结首先,通过学生小组交流,谈一谈你有什么收获。(提示学生从三方面入手:1、学到了知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想。)然后,教师引导小组间评价。使学生对本节内容有一个更系统、深刻的认识,实现从感性认识到理性认识的飞跃。(四)、板书设计为了集中浓缩和概括本课的教学内容,使教学重点醒目、突出、合理有序,以便学生对本课知识点有了完整清晰的印象。我只选择了本节课的两个知识点作为板书。
6、问题的检验学生提出的问题和老师拓展的问题在解答过程中,学生能否真正领会,或领会的程度如何?这就需要检验才能了解。检验的方式很多,可以通过交流、调查、反思、随堂检测等方式进行。我主要采用随堂检测的方式,把事先准备好的自测题发给学生,或利用多媒体投影来进行当堂检测。检测题目不宜过多,可随学生的课堂表现而有所增减,同时,把拓展性的问题作为思考题留给学生课外探索。如,这节课我是选择了《同步作业》中的几个具有代表性的问题来完成检验的。安排这一环节的意图:通过把教学内容以问题的形式列出来,用于检验学生对知识点的掌握和教师教学效果的了解,帮助教师及时掌控课堂教学情况,调整教学思路和教学进度。7、我的收获和疑惑课程结束时,让学生谈谈自己的收获以及还有哪些问题没能搞明白。安排这一环节的意图:这一环节可以促使学生对本节课的内容进行主动的、深层次的的回顾与反思,从而加深学生对所学知识的整理、记忆与理解,同时也便于老师对课堂教学效果的及时掌握和调整以后的教学思路。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。