尊敬的各位老师,各位同学:大家早上好。在中华民族五千年的历史长河中,曾涌现过多少风流人物,仁人志士。“路漫漫其修远兮,吾将上下而求索”屈原追求真理的科学精神激励着多少中华儿女,励志成材,报效祖国。“富贵不能淫,贫贱不能移,威武不能屈”孟子的教诲激励成就了多少中华伟丈夫,民族大英雄。“先天下之忧而忧,后天下之乐而乐”那是范仲淹心系天下的博大情怀。还有岳飞精忠报国的故事,林则徐虎门硝烟的壮举,孙中山“天下为公”的胸怀,周恩来“为中华之崛起而读书”的信念,都让我们回想起中华民族一段又一段荡气回肠的历史。从古代的四大发明到如今的神州飞天,中国人演绎了多少了不起的神话。中国人的民族精神是中华民族五千年文明史的结晶。中国人的民族精神是由舜禅让的精神,苏秦刺股的精神,苏武牧羊的精神,孔融让梨的精神,屈原问天的精神,卧薪尝胆的精神等等无数崇高的精神组成的。正如鲁迅先生所说:“我们自古以来,就有埋头苦干的人,有拼命硬干的人,有为民请命的人,有舍身求法的人——这就是中国人的脊梁。”
全国爱耳日国旗下讲话亲爱的老师、同学们:大家早上好!今天我国旗下讲话的题目是《世界精彩—我听到》。老师考考大家:你们会写“聪明”的“聪”吗?他是什么偏旁?对,是“耳”字旁。这就告诉我们:一个聪明的人,他耳朵的本领一定很大。就拿我们每位小学生都要靠耳朵去专注地听老师讲课,专心地倾听别人的读书、发言,还要靠耳朵去欣赏美妙的音乐,欣赏大自然的一切声响,宏大的,微弱的,铿锵的,柔美的……耳朵都重要啊!可据有关部门提供的资料显示,目前我国有耳聋的残疾人达2057万人。其中耳聋儿童可达100多万。这引起了全社会的高度重视。XX年,我国就把每年的3月3日是全国的“爱耳日”。那我们该怎样保护好自己的耳朵呢?下面老师来向大家介绍几个护耳小知识:1.避免到太嘈杂的地方,如歌厅、迪厅。2.在噪声大的环境中,可配戴适当的护耳罩及耳塞。3.耳朵发炎或耳鸣,要立刻看医生。4.用耳机听cd、md、mp3时不要把音量调得太大。
甲方: ,身份证号码: 乙方: ,身份证号码: 甲方同意将其所有的本合同项下的停车位(以下称本停车位)由乙方有偿使用,乙方保证交纳相关费用并按要求使用本停车位。甲、乙双方经过友好协商,就停车位租赁事宜,达成如下合同,以兹信守。第一条、本停车位位置本停车位位于 市 区 小区(以下简称本小区) 地下 停车位 号。甲方应确保本停车位处于适租状态。第二条、租赁期限乙方租用本停车位期限为 年,自 年 月 日起至 年 月 日止。在乙方向甲方支付全部本停车位租赁费后,甲方同意于 年 月 日前,将本停车位交予乙方使用。第三条、本停车位的租赁费及物业管理费1、车位租赁费(1)金额本车位租金 元/月,大写 。该租赁费□包含/□不包含本小区物业管理单位收取的停车管理费。(2)交付期限及方式乙方应于本合同签订之日一次性向甲方全额交付本年度的本停车位租赁费,乙方到期后如需要续租,需提前一个月通知甲方,在同等条件下,乙方有优先续租权。
尊敬的各位领导老师、亲爱的同学们:大家早上好!今天我演讲的题目是《对自己负责,就把梦想坚持下去》。在我们每个人的心中都怀揣着一个属于自己的梦想。然而,什么是梦?什么又是梦想?梦是期待;而梦想是坚强——是你把飘渺的梦坚持作为自己理想的勇气和执着,是你对自己负责的最高境界。人们常说,有志者,事竟成;还有人说,最贫穷的是没有知识,最可怜的是没有志气。由此可见立志的重要性,所以,人不能没有梦想。雄鹰和母鸡都有一双翅膀,但雄鹰可以搏击蓝天,而母鸡只能扑腾于庭院。其根本原因就在于,母鸡的梦想只是一把米糠,雄鹰的梦想是搏击蓝天!所以,我们立志就要立大志,志当存高远!德国前总理施罗德身材矮小,出身卑微,很多人都不看好他。《明镜周刊》总编纳伦曾经骂部下说,报道施罗德纯粹是浪费。但施罗德听后却说:“我想当总理,你们等着瞧吧!”在施罗德看来,“如果人一生中只追求一件事的话,他就一定会成功。”最终他真的当上了德国总理,梦想成真。
(二)说学法指导把“学习的主动权还给学生”,倡导“自主、合作、探究”的学习方式,因而,我在教学过程中特别重视创造学生自主参与,合作交流的机会,充分利用学生已获得的生活体验,通过相关现象的再现,激发学生主动参与,积极思考,分析现象背后的哲学理论依据,帮助学生树立批判精神和创新意识,从而增强教学效果,让学生在自己思维的活跃中领会本节课的重点难点。(三)说教学手段:我运用多媒体辅助教学,展示富有感染力的各种现象和场景,营造一个形象生动的课堂气氛。三、说教学过程教学过程坚持"情境探究法",分为"导入新课——推进新课——走进生活"三个层次,环环相扣,逐步推进,帮助学生完成由感性认识到理性认识的飞跃。下面我重点简述一下对教学过程的设计。
一、教材分析(一)说本框题的地位与作用《树立创新意识是唯物辩证法的要求》是人教版教材高二《生活与哲学》第三单元第十课的第一框题,该部分的内容实质上是在阐述辩证法的革命批判精神和否定之否定规律。是第三单元思想方法与创新意识》的重点和核心之一。学好这部分的知识对于学生进一步理解辩证法的思维方法,树立创新意识起着重要的作用。(二)说教学目标根据课程标准和课改精神,在教学中确定如下三维目标:1、知识目标:辩证否定观的内涵,辩证法的本质。辩证否定是自我否定,辩证否定观与书本知识和权威思想的关系,辩证法的革命批判精神与创新意识的关系,分析辩证否定的实质是"扬弃",是既肯定又否定;既克服又保留。深刻理解辩证法的革命批判精神,分析为什么辩证法的革命批判精神同创新意识息息相关。
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
这次专题培训,就是进一步提高认识,打牢思想基础,学好学通政策规定,杜绝人为失误。待会儿,XXX同时将结合两项法规,就领导干部个人有关事项报告查核结果处理案例专题讲解。组织部要带头学深学透、精通政策,切实发挥好指导、服务、帮助作用。全体处级干部要认真领会,要原原本本、逐字逐句认真研读两项法规精神和《领导干部个人有关事项报告表》各项内容,确保报告内容全面、真实、准确,符合规定要求。
回望2020年,令人感慨万千。这一年,面对肆虐的新冠疫情,全国人民众志成城,取得抗疫斗争重大战略成果;这一年,我国经济逆风前行,走出V字形复苏曲线,中国成为全球唯一实现正增长的主要经济体;这一年,中国如期完成脱贫攻坚目标任务,提前十年完成笔扫千军整理联合国减贫目标;这一年,学校秉持“融教育”办学理念,稳步推进教育质量提升工程,高级中学一本上线38人,本科上线330人;初级中学中招500分以上22人,450分以上68人,教育教学质量在全市同类学校中名列前茅;
一是早期消防设计问题突出。存在消防车通道狭窄,无救援场地等情况,加之私家车普及,占道现象突出,严重影响火灾扑救。二是建筑消防设施损坏严重。部分建筑消防维保经费投入不足,维护保养不到位,自防自救能力不足,消防设施“带病”运行,甚至瘫痪。三是高层建筑救援难度大。建筑高度越高,消防系统就越复杂,高层建筑内部人员众多,火灾后疏散困难,消防救援设备落后。
这次黄岩区流动人口服务管理局的成立,标志着我区流动人口服务管理工作迈上了一个新的台阶。各级各部门要站在构建社会主义和谐社会的政治和战略高度,充分认识加强和规范这项工作的重要意义,切实作到“三个坚持”: 一要坚持服务先行,注重提供公共服务和公共产品。各地各部门要将流动人口纳入地区公共服务体系,加大经费投入,着力提供文化教育、权益维护、居住环境等方面的人性化服务,让流动人口对黄岩产生深厚的认同感和归属感,与当地居民共创和谐稳定环境。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。