一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。
经过探究发现只有10与11出现的概率最大且相等(在探究的过程中提醒学生按求等可能性事件的概率步骤来做,在判断是否等可能和求某个事件的基本数上多启发和引导,帮助学生顺利突破难点。)及时表扬答对的学生,因为这个问题整整过了三个世纪,才被意大利著名的天文学家伽利略解决。后来法国数学家拉普拉斯在他的著作《分析概率论》中,把伽利略的这个解答作为概率的一个基本原理来引用。(适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的)8、课堂小结:通过这节课的学习,同学们回想一下有什么收获?1、基本事件和等可能性事件的定义。2、等可能性事件的特征:(1)、一次试验中有可能出现的结果是有限的。(2)、每一结果出现的可能性相等。3、求等可能性事件概率的步骤:(1)审清题意,判断本试验是否为等可能性事件。
(3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的
6、袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是( )A.1 B.3 C. 5 D.10活动目的:拓宽学生的思路,对本节知识进行查缺补漏,并进一步的巩固加深,鼓励学生大胆猜测,培养学生勤于动脑、勇于探究的精神. 注意事项:对于第4题与第5题可适当的说出事件发生的可能性的大小,即概率的大小,为今后学习概率做铺垫;对于第6题可根据回答情况讲解.七、学习小结:师生共同回顾新知探究的整个过程,互相交流总结本节的知识点:(1)理解确定事件与不确定事件;(2)知道不确定事件发生的可能性有大有小;(3)合理运用所学知识分析解决相关问题.目的:锻炼学生的口头表达能力,体会学习的成果,感受成功的喜悦,增强学好数学的信心.(学生畅所欲言,教师给予鼓励)
(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
4.已知一个三角形的两边长分别是4cm、7cm,则这个三角形的周长的取值范围是什么?目的:主要是让学生掌握三角形三边的和差关系具体的应用,并能应用生活中实际问题。同学之间可以合作交流互相探讨,发展学生空间观念、推理能力,使学生善于观察生活、乐于探索研究,激发学生学习数学的积极性,从中适当的对学生进行德育教育,教育学生穿越马路时间越长就越危险。(五)课堂小结学生自我谈收获体会,说说学完本节课的困惑。教师做最终总结并指出注意事项。目的:让学生畅所欲言,谈收获体会,教师给予鼓励。主要是让学生熟记新知能应用新知解决问题,培养学生概括总结的能力、有条理的表达能力。注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
一.情境引入:师:我们生活在一个变化的世界中,很多东西都在悄悄地发生变化你能从生活中举出一些发生变化的例子吗?生1:从春季到夏季气温在逐渐增加.生2:小树每年都在长高长粗.生3:我杯子里的水喝一口少一口.(说着就拿起杯子喝水,引起同学哈哈大笑)师: 你这个变化中有几个量在变化?生3:两个,一个是喝的口数,一个是水的多少?师: 它们的变化有什么联系吗?生3:有,随着喝的口数的增加,瓶中的水越来越少.生4:那我的这张纸越撕越小(此时该同学顺便从自己本子上撕下一张纸并将这张纸一次一次的撕下去,其他同学们点头称是)师: 你这个变化中又有几个量?它们又是怎么变化的?生4:两个,一个是撕的次数,另一个是纸的大小.师:那么哪个量随哪个量的变化而变化的呢?
《用尺规作三角形》是北师大版《义务教育课程标准实验教科书.数学》七年级下册第五章第五节的内容。在之前的学习中,我们已经学会用尺规作线段和角,而边和角是三角形的基本元素,这节课主要是学习利用尺规按要求做三角形,表面上看是操作的过程,但教科书中提出了有关探究性问题,目的是引导学生关注作图背后的数学思考,即用尺规作三角形用到了两个三角形全等的条件,因此本课教学应引导学生积极思考,使学生体会到作图的每一步骤都是有根 有 据的.二、教学目标分析参照《课程标准》的要求及教材的特点,考虑到学生已有的认知结构和心理特征 ,我制定了如下教学目标:1、知识与技能:1.会用尺规按要求作三角形:已知三边作三角形,已知两角及夹边作三角形,已知两边及夹角作三角形.2.会写出三角形的已知、求作、作法. 3.能对新作三角形给出合理的解释.
练习3、先化简,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通过例题和联系将所学知识升华,提升)练习4、动动脑。(让学生进一步感知生活中处处有数学)(四)、畅谈收获、拓展升华1、本节课你学到了什么?依据是什么?整式的乘法存在什么没有解决的问题?(同桌互讲,师生共同小结)2、布置作业:习题1.9知识技能1四、说课小结本堂课我主要采用引导探索法教学,倡导学生自主学习、尝试学习、探究学习、合作交流学习,鼓励学生用所学的知识解决身边的问题,注重教学效果的有效性。学生在合作学习中,可以活跃课堂气氛,消除心理压力,在愉快的环境中学习知识,有效地拓展学生思维,成功地培养学生的观察能力、思维能力、合作探究能力、交流能力和数学学习能力。但由于本人对新课标和新教材的理解不一定十分到位,所以在教材本身内在规律的把握上,会存在一定的偏差;另外,由于对学生的认知规律认识不够,所以教学活动的设计不一定十分有效。所有这些都有待教学实践的检验。
此题的设计目的:及时的练习一是起到巩固新知识的目的,二是及时了解学生掌握新知识的情况,起到反馈的目的。这样设计的依据是:小题多,是让更多的学生参与到学习中来,及时给予他们更正,更多的是对他们的鼓励和表扬,有简单的题尽量让基础不太好的的学生去说,以让他们感受到成功的乐趣;并且《新课标》中指出课程内容应处于学生“最近发展区”的范围以内,让成功始终伴随学生学习的旅程,以保证学生不会因过多的失败而放弃他们的努力,失去发展的机会。第四环节:师生合作,归纳总结。先由学生个人总结,然后教师补充。设计目的:通过学生个人小结,教师可以了解学生掌握知识的情况,培养学生总结概括的能力,教师补充起到完善所学知识的目的。第五环节:布置作业,巩固提高。设计目的:因材施“作业”,分层次布置作业,减轻学生的负担,全面推行素质教育,让学生学有用的数学,不同的学生学习不同的数学,在数学中得到不同的发展,以求彰显学生的个性。
1.小明调查了班级里20位同学本学期计划购买课外书的花费情况,并将结果绘制成了下面的统计图.(1)在这20位同学中,本学期计划购买课外书的花费的众数是多少?(2)计算这20位同学计划购买课外书的平均花费是多少?你是怎么计算的?反思?交流*(3)在上面的问题,如果不知道调查的总人数,你还能求平均数吗?2.某题(满分为5分)的得分情况如右图,计算此题得分的众数、中位数和平均数。活动4:自主反馈1.下图反映了初三(1)班、(2)班的体育成绩。(1)不用计算,根据条形统计图,你能判断哪个班学生的体育成绩好一些吗?(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?(3)如果依次将不及格、及格、中、良好、优秀记为55、65、75、85、95分,分别估算一下,两个班学生体育成绩的平均值大致是多少?算一算,看看你估计的结果怎么样?*(4)初三(1)班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的理由吗?
有意义,字母x的取值必须满足什么条件?设计意图:通过例题的讲解,使学生加深对所学知识的理解,避免一些常见错误。而变式练习设计,延续的例题的风格,一步一步,步步深入,本节课的教学难点就在学生的操作活动中迎刃而解了。对提高学生对所学知识的迁移能力和应用意识,激发好奇心和求知欲起到良好效果。(五)、巩固运用,提高认识1、通过基础训练让学生体验学习的成就感。2、应用拓展:增加难处,再次让学生联系以前的知识,增强学生的数学应用意识。(六)、总结评价,质疑问难这节课我们学习了什么?设计意图:学生共同总结,互相取长补短,学生在畅所欲言中对二次根式的认知得到进一步的巩固升华。五、板书设计.采用纲领式的板书,使学生有“话”可说,有“理”可循,在简单板书设计中使学生体会到数学的简洁美。
探究活动二的安排,是要让学生明确只靠实验得出的结论,可能会以点带面,从而进一步说明学习推理的必要性。并小结出:如果要判断一个结论不正确只要举一个反例就可以了。探究活动三的安排是说明只靠实验得出的结论也不可靠,必须经过有根有据的推理才行。活动交流:(1)在数学学习中,你用到过推理吗?(2)在日常生活中,你用到过推理吗?这是一座桥梁,把课堂引向推理的方法。例题的安排,可以让学生学会简单的推理方法,同时增强学生的学习兴趣。课堂练习:①游戏:苹果在哪里?②判断:是谁打破玻璃?把练习变成游戏的形式,也是为了增加课堂的趣味性,提高学生的学习兴趣。课堂小结:进一步明确学习推理的必要性。课后作业:①课本习题6.1:2,3。②预习下一节:定义与命题
[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?根据所给条件写出简单的一次函数表达式是本节课的重点加难点,所以在解决这一问题时及时引导学生总结学习体会,教给学生掌握“从特殊到一般”的认识规律中发现问题的方法。类比出一次函数关系式的一般式的求法,以此突破教学难点。在学习过程中,我巡视并予以个别指导,关注学生的个体发展。经学生分析:(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);(2)当x=1760时,y=0.05×(1760-1600)=8(元);(3)设此人本月工资、薪金是x元,则19.2=0.05×(x-1600) X=1984五.教学效果课前:通过本节课的学习,教学目标应该可以基本达成,学生能够理解一次函数和正比例函数的概念,以及它们之间的关系,并能正确识别一次函数解析式,能根据所给条件写出简单的一次函数表达式,且通过本节课的学习学生的抽象思维能力,数学应用能力都能有所提升,
2、测量。各个组的成员根据上面的设计方案在小组长的带领下到操场测量相关数据。比一比,哪组最先测量完并回到教室?(二)根据测量结果计算相关物体高度。时间为2分钟。要求:独立计算,并填写好实验报告上。(三)展示测量结果。时间为3分钟。各组都将自己计算的结果报告,看哪些同学计算准确些?(四)整理实验报告,上交作为作业。此活动主要是让学生通过动手实践,分工合作,近一步理解三角函数知识,以及从中体会学习数学的重要性,培养学生学习数学的兴趣和激情,增强团队意识。四、小结:本节课你有哪些收获?你的疑惑是什么?(2分钟)1、 知识上:2、 思想方法上:五、板书设计1、目标展示在小黑板上2、自主学习的问题展示在小黑板上3、学生设计的方案示意图在小组展示板上展示
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。(四)作业布置加强“教、学”反思,进一步提高“教与学”效果。四、说板书设计采用了如下板书,要点突出,简明清晰。一次函数正比例函数图像的画法:确定两点为(0,0)和(1,K)一次函数选择的两点为:(0,k)和(-b\k,0)五、说课后小结实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识
一、说教材:等腰三角形是北师大版初中八年级下册数学教材第一章第一节的教学内容,本节是轴对称图形的应用,是研究等腰三角形的开篇。通过本章节的学习,可以丰富和加深学生对已学图形的认识,为以后的图形学习和证明打好基础。本节在编排上考虑学生的认知规律,从学生容易接受的动手操作找规律开始到几何画板的验证再过渡到几何证明与应用。根据课程标准,确定本节课的目标为:【教学目标】1.知识与能力 理解并掌握等腰三角形的定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题.2.过程与方法通过动手操作、动态演示等方法,培养学生思考探究数学的能力;通过例题与练习,提高学生添加辅助线解决问题的能力。3.情感、态度与价值观 在探索等腰三角形性质的过程中体会轴对称图形的美,感受数学与生活的联系;在例题教学中,感受数学之美;培养学生分析解决问题的能力,使学生养成良好的学习习惯.
二、教法分析为了让学生较好掌握本课内容,本节课主要采用观察法、讨论法等教学方法,通过创设情境,使学生由浅到深,由易到难分层次对本节课内容进行掌握。三、学法分析本课要求学生通过自主地观察、讨论、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。四、教学过程创设问题情景,引入新课活动内容:寻找不等的量 课本例一,例二设计目的:学生体会在现实生活中除了存在许多等量关系外,更多的是不等关系的存在,并通过感受生活中的大量不等关系,初步体会不等式是刻画量与量之间关系的重要数学模型。经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。课本例四,例五设计目的:培养学生数学抽象能力,提高把实际问题转化为数学问题的能力。六.课堂小结体会 常量与常量间的不等关系变量与常量间的不等关系变量与变量间的不等关系
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?在这一环节中的设计:(1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;(2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;(3) 组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。