提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

大班科学教案:有趣的转动

  • 国旗下的讲话演讲稿开头:让运动成为习惯

    国旗下的讲话演讲稿开头:让运动成为习惯

    演讲稿频道《国旗下的讲话演讲稿开头:让运动成为习惯》,希望大家喜欢。大家早上好!很荣幸能在这阳光明媚的早晨,在亲切而壮严的国旗下做演讲。今天我演讲的题目是“让运动成为习惯”。我国古代著名的医学家华佗认为:生命在于运动;而民间也有更为直白的俗语说道:人勤病就懒,人懒病就勤。说得其实是一个意思,就是健康的身体需要运动来保证,而人生最大的财富正是健康。所以,要想拥有这笔财富,最佳的方法就是:让运动成为习惯。如今,美丽的校园正给我们提供了这样的条件,宽广的绿茵场给了大家一个充分展现自我的空间。每天下午,放下手中的功课,跑上两圈,挥洒一些汗水,倦意便顿时消失,不仅达到了劳逸结合的效果,也丰富了我们的课余生活。若长期坚持下去,必将使我们的体魄有所增强,从而有利于我们以更好的状态投入学习活动中去。然而,有些同学则认为体育锻练是浪费时间,认为分秒必夺的读书学习才是硬道理。他们无论早晨、下午甚至是体育课上都捧着书抓紧学习。他们牺牲的是运动的时间,得到的是短期内学习成绩的提升。

  • 国旗下的讲话演讲稿:让运动成为习惯

    国旗下的讲话演讲稿:让运动成为习惯

    演讲稿频道《国旗下的讲话演讲稿范文:让运动成为习惯》,希望大家喜欢。亲爱的老师、同学们:大家早上好!很荣幸能在这阳光明媚的早晨,在亲切而壮严的国旗下做演讲。今天我演讲的题目是“让运动成为习惯”。我国古代的医学家华佗认为:生命在于运动;而民间也有更为直白的俗语说道:人勤病就懒,人懒病就勤。说得其实是一个意思,就是健康的身体需要运动来保证,而人生的财富正是健康。所以,要想拥有这笔财富,的方法就是:让运动成为习惯。如今,美丽的校园正给我们提供了这样的条件,宽广的绿茵场给了大家一个充分展现自我的空间。每天下午,放下手中的功课,跑上两圈,挥洒一些汗水,倦意便顿时消失,不仅达到了劳逸结合的效果,也丰富了我们的课余生活。若长期坚持下去,必将使我们的体魄有所增强,从而有利于我们以更好的状态投入学习活动中去。然而,有些同学则认为体育锻练是浪费时间,认为分秒必夺的读书学习才是硬道理。他们无论早晨、下午甚至是体育课上都捧着书抓紧学习。

  • 关于期末及暑期安全动员的国旗下讲话

    关于期末及暑期安全动员的国旗下讲话

    老师们、同学们,早上好!XX年年5月15日晚广东省茂名市电白县第三中学发生了一起杀人案,两名学生死亡,四名学生重伤,而持刀行凶者,就是和他们同在一所中学读初二年级的一名17岁的少年。校园安全与每位师生密切相关。它关系到我们学生能否健康成长,能否顺利完成学业;关系到我们老师能否在一个宁静、安全的环境中教书育人,为国家培养和造就各种人才。然而,近年来频发的校园伤害事件却令学校与家长双方都感觉尴尬。调查显示,我国中小学生因交通事故、建筑物倒塌、食物中毒、溺水、治安事故等死亡的,平均每天有40多人,相当于每天有一个班的学生消失!高考刚刚结束,又面临期未的到来,且正值春夏季节变化雨水较多时期,为了进一步做好防汛工作、做好学校安全教育工作,确保全校师生期未及暑假的各项安全,现提出以下几点要求,希望全校师生都能认真做好。

  • 关于让运动成为习惯的国旗下讲话

    关于让运动成为习惯的国旗下讲话

    让运动成为习惯今天我在国旗下演讲的题目是《让运动成为习惯》。我国古代著名的医学家华佗认为:生命在于运动;而民间也有更为直白的俗语说道:人勤病就懒,人懒病就勤。说得其实是一个意思,就是健康的身体需要运动来保证,而人生最大的财富正是健康。只有健康了,我们做什么事情才有动力,才能创造更大的财富。所以,要想拥有这笔财富,最佳的方法就是:让运动成为习惯。如今,美丽的校园正给我们提供了这样的条件,宽大的操场和弯曲的跑道给了大家一个充分展现自我的空间。每天早起锻炼会让你一天精神抖擞,每天下午,放下手中的功课,跑上两圈,挥洒一些汗水,倦意便顿时消失,不仅达到了劳逸结合的效果,也丰富了我们的课余生活。若长期坚持下去,必将使我们的体魄有所增强,从而有利于我们以更好的状态投入到学习中去。然而,有些同学则认为体育锻练是浪费时间,认为分秒必夺的读书学习才是硬道理。他们牺牲的是运动的时间,得到的是短期内学习成绩的提升。

  • 关于期末考试前国旗下动员的讲话稿

    关于期末考试前国旗下动员的讲话稿

    各位老师,各位同学!大家早上好!我今天国旗下讲话的主题是: 认真复习,迎接期末考试又一个清新明媚的早晨,又一次旭日初升时刻,转眼间,我们又进入了紧张的期末复习冲刺阶段。在过去的时间里,我们每个同学都曾经努力过,付出过,收获过快乐与成功。面对一天天临近的期末考试,我们又该如何迎接这次挑战呢?在这里,给大家提几点复习建议:1.制定目标、坚持到底。比如每门课想得多少分,并把自己的目标写下来,贴在桌子的左上角,不断提醒自己,鞭策自己。一个成功的人是一个自觉自律的人。也许动画节目很精彩,也许游戏很吸引人,但是,在没有完成自己的学习任务时,绝对不能去碰的。毕竟,长身体,长知识才是我们现在的主要任务。2. 充分准备,胸有成竹哲人说过:成功永远属于有准备的人,在考试中更是如此,一个没有作好充分准备的学生,肯定是焦虑不安,心神不定,并抱有饶幸心理,这样的学生能考出好成绩吗?所以,我希望每一个位学生利用最后一周时间,把老师复习过的知识结构进行最后梳理,查缺补漏,重点内容重点复习,不打无准备之仗,胸有成竹地满怀自信地走进考场。

  • 关于期末考试动员国旗下的讲话稿

    关于期末考试动员国旗下的讲话稿

    同学们、老师们:大家早上好!时间过得很快,开学仿佛还是昨天,转眼间我们就要面临期末考试了。本周四、周五,我们将迎来本学期的期末考试。期末考试是对我们前一阶段学习的全面检测,我们可以通过考试,对自己的学习情况有一个理性的认识,从考试结果的反馈及时获得矫正信息,以便调整自己以后的学习;另外对于老师来说,可以更好的了解同学们掌握知识的总体情况,为以后改进教学方法、调整教学措施提供全面客观的依据。期末考试是一次重要的考试,这对任何一位同学都是相同的。对于初一年级的同学来说,这次考试,是初中阶段的第一次大型测试,将在很大程度上奠定每一位同学初中三年学习的基调。不仅如此,这一次测试,还可以检测同学们对于不同于小学的初中学习方法的适应程度,并对自己的学习方法作一些改善。对于初二年级的同学来说,这次考试,是一种跨越。初二,是初中三年的学习中承上启下的一年。而从学习的知识上来说,又加深了一个层次。这次测试,从总的来看,又是在初中学习中踏下坚实的一步。

  • 关于环保的国旗下讲话:环保益起来主题活动

    关于环保的国旗下讲话:环保益起来主题活动

    助力263 环保益起来——防霾行动主讲人:陆勤敬爱的老师们,亲爱的同学们:大家早上好!今天,我们国旗下讲话的主题是“助力263 防霾益起来”。“雾霾”,这是一个曾经生僻现在却人人皆知的词语。去年冬天,雾霾天气卷土重来,席卷了全国四分之一的城市,不同程度的影响了6亿人的日常生活。“雾霾”已经从一个普通的气象名词,成为了一片我们生活中避之不及,又挥之不去的阴影。无数的悬浮在空中,让曾经新鲜的空气不再清新 ,使曾经美丽的天空不再蔚蓝,甚至还让厚重的防霾口罩、各类空气净化设备成了我们的日常用品 。著名记者柴静关于雾霾调查的纪录片——《穹顶之下》,不仅引发了全社会关于雾霾成因和治理方式的大讨论,更引起了从百姓到政府对防霾、治霾的高度重视。

  • 第九周国旗下讲话稿:《创新是永恒的推动力》

    第九周国旗下讲话稿:《创新是永恒的推动力》

    10月17日,“神舟”载着景海鹏、陈冬两位航天员在酒泉卫星发射中心顺利升空,19日,与“天宫二号”完成交会对接任务。我泱泱华夏大国已高高屹立与世界航空航天之林。那升空的不只是火箭,更是伟大的航天梦,中国梦;那对接的不只是太空舱,更是中国与世界、世界与宇宙;那遨游太空的,也不只是两位宇航员,更是一种创新的精神、科技的力量!中国不是第一个迈入太空的国家,早在上世纪五六十年代,苏联就领先于世界进入太空,继而是美国。虽然位列第三,中国确实发展最迅速,也是后蓄力量最势不可挡的。从一开始借助美国、苏联的技术支持,到后来的独立自主,再到后来,美国在航天界屡遭挫败、停滞不前,而中国立下了多座丰碑。究其根本,想必是科技创新的力量。我国航天事业取得成就于创新。早在1956年,我国就提出了“十二年内完成航空事业独立自主”的目标,几十年如一日的探索中我国航天工作者汲取欧美国家经验的同时,根据本国需要,开拓创新,终于收获今日之成就。若只是照搬技术,可能也会发生类似美国“阿波罗号”的惨剧吧!

  •  五一劳动节国旗下讲话——“五一”的期盼

    五一劳动节国旗下讲话——“五一”的期盼

    再过几天就是五一国际劳动节了。这是全世界劳动者的共同节日。是劳动,使我们过上今天美好的生活;是劳动,使我们的家园更加美丽;是劳动,创造了世界的千千万万。一尘不染的马路,是清洁工们劳动的结晶;拔地而起的高楼,是建筑工人们辛勤的汗水所凝聚而成的。学校里,整洁的操场、干净的走廊,无一不是源自于人们的劳动。是劳动为我们带来幸福的生活,劳动最光荣!劳动之所以伟大,是因为劳动引发了一系列的发明创造,推动了社会生产力的不断进步和物质财富的极大丰富,使人类大踏步,从必然王国向自由王国迈进。劳动之所以崇高,是因为劳动是财富之母,人类所享受的一切物质成果、科技成果、文化艺术成果无一不是劳动的产物。奥涅格说过一句话:“劳动与人类正如树枝和树干连接在一起那样,脱离树干的树枝很快就会枯死。”

  • 高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10

  • 高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    高教版中职数学基础模块下册:7.1《平面向量的概念及线性运算》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

上一页123...136137138139140141142143144145146147下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。