解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
一是树立“以人为本、安全发展”构建和谐矿区的新理念。安全生产工作事关公司和职工生命财产安全,事关基本建设全面发展。在深入贯彻国家有关法律法规的基础上,把“安全发展”的理念更加深入人心,让安全文化进各施工单位每个角落,促进我公司基本建设快速发展。各部门、各单位的领导,要进一步增强安全生产法律法规意识,树立“以人为本、安全第一”的责任感和紧迫感,认真负责地抓好安全建设工作,坚决防止事故的发生,真正担负起“综合治理,保障平安”的责任。
一是树立“以人为本、安全发展”构建和谐矿区的新理念。安全生产工作事关公司和职工生命财产安全,事关基本建设全面发展。在深入贯彻国家有关法律法规的基础上,把“安全发展”的理念更加深入人心,让安全文化进各施工单位每个角落,促进我公司基本建设快速发展。各部门、各单位的领导,要进一步增强安全生产法律法规意识,树立“以人为本、安全第一”的责任感和紧迫感,认真负责地抓好安全建设工作,坚决防止事故的发生,真正担负起“综合治理,保障平安”的责任。
同学们,军训很苦,苦的让人不愿坚持,但军训也很甜,他可以增强我们的体魄,深化我们的情感,提升我们的思想境界。为此,我对同学们提出三点要求: 一、要求同学们要把自己当做一名真正的军人,严格要求自己,继承和发扬不怕苦、不怕累、艰苦奋斗的精神,克服困难、努力拼搏,圆满完成军训任务。 二、希望同学们在接下来的军训中,学会关心集体,关心他人,建立深厚的战友情、同学情,增强班级荣誉感。 三、希望同学们每天训练后要认真总结,及时深化心灵深处的精神力量,使之成为将来学习、生活和工作所需的宝贵财富。
一、教材分析 《真正的哲学都是自己时代精神上的精华》是人教版高中政治必修四第3章第1框的教学内容,主要学习哲学与时代的关系。二、教学目标1.知识目标:识记哲学是时代的精神上的精华;理解哲学与时代的关系。2.能力目标:培养学生运用哲学理论观察、分析、处理社会问题的能力,增强学生的时代感。3.情感、态度和价值观目标:培养学生与时俱进的思想品质,让学生关注时代、关注现实、关注生活,逐步树立科学的世界观、人生观、价值观 。三、教学重点难点哲学与时代的关系。四、学情分析本框题的内容比较抽象,不易理解,所以讲解时需要详细。教师指导学生借助历史知识进行理解。五、教学方法1.教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。2.学案导学:见后面的学案。3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
商会乡贤的见面活动要继续开展,不过方式方法有所改变,建议各县市理事以上的领导带头出钱出力,1月3日副会长董时川自费设宴邀请在襄工作和生活的荆州籍洪湖人士,开展了一次见面会。我同监事会主席余光辉及秘书处相关人员参加,活动开展的很好,知名人士纷纷表示会大力支持商会工作,愿为商会的发展建言献策,只要会员和乡贤有什么诉求,他们均愿意在力所能及的范围为会员和乡贤做贡献。建议其他县市理事以上的领导积极效仿,出钱、出力;
二是问题整改再夯责。扎实推进各级各类反馈问题整改,切实扛起问题整改政治责任,细化整改措施,全力加快问题整改。全力完成“五乱”问题整改销号任务,建立健全“五个一”长效机制,对“五乱”问题实行零容忍,坚决扭住不放,露头就打。三是生态价值再深化。按照省市生态产品价值实现机制试点工作总体安排部署,依据《32条措施》和《重点工作任务清单》,积极谋划好全县生态产品价值实现机制试点路径,推动“我在秦岭有宝”微信小程序上线,持续开展绿色创建活动,不断挖掘提炼我县生态产品价值实现典型案例。四是督查检查再发力。要始终保持零容忍的高压态势,严格按照“双查”“快查快处”工作机制,常态化打击秦岭“五乱”行为。不定期开展明察暗访和专项督查倒逼任务落地落实,严肃查处秦岭生态环境保护问题线索,切实发挥考核“指挥棒”作用,不断加大秦岭生态环境保护领域监督执纪问责力度,切实营造风清气正的秦岭生态环境保护工作氛围。
这次黄岩区流动人口服务管理局的成立,标志着我区流动人口服务管理工作迈上了一个新的台阶。各级各部门要站在构建社会主义和谐社会的政治和战略高度,充分认识加强和规范这项工作的重要意义,切实作到“三个坚持”: 一要坚持服务先行,注重提供公共服务和公共产品。各地各部门要将流动人口纳入地区公共服务体系,加大经费投入,着力提供文化教育、权益维护、居住环境等方面的人性化服务,让流动人口对黄岩产生深厚的认同感和归属感,与当地居民共创和谐稳定环境。
10.阅读材料,回答问题。材料一:近年来,公路上经常出现“路怒族” ,只要看到别人抢道、开车慢、不让道等他们就会 骂人,而且骂得很难听,甚至大打出手。材料二:在新型冠状病毒肺炎疫情防控期间,2020年2月1 日贵州省贵阳市的某商场,一位打扮靓 丽的年轻女子要进入商场时不戴口罩,被商场门口执勤的店员劝阻,要求戴上口罩才能进入商场,该 女子不但不听劝告,而是嗤鼻一笑,不以为然。随后就绕开工作人员打算进入商场,4名工作人员随 后上前阻止,该女子竟然要强行闯入商场,甚至对商场工作人员拳脚相加,随后商场工作人员报警。(1) 结合材料说说,情绪受哪些因素的影响?(2) 根据材料谈谈在生活中如何管理愤怒?11.【东东的日记】下面是东东的“微日记”片段,记录着成长的点滴,与你分享。
一、项目立镇突破重点。 牢牢树立“项目为王”观念,持续优化服务,做大项目总量。推动XX、XX、XX、XX等X家规模以上企业加快技术升级、动能升级,凝聚生产要素全力做好企业服务,切实为企业解难题、促发展。积极培育XX、XX、XX、XX等中小企业,精准施策、精准服务,力争全年新增规模以上企业X家。全力做好在建项目服务,加快推进XXX、XX、XX等X个在建项目建设进度,力争早日投产达效。 二、抢抓招商补齐短板。 一是壮大平台,发挥优势。立足XX中小企业创业园、XX工业园2个工业园区,进一步发挥平台优势,将园区壮大作为重要任务,进一步优化园区路网结构,逐步完善水电网等基础设施配套,力争将工业园区打造成为全镇产业发展的重要引擎。 二是摸清家底,挖掘潜力。对闲置厂房和闲置用地进行全面摸底,根据产业发展规划,进行点对点招商,全力破解用地难题。 三是建好队伍,提高本领。在做好全员招商、全方位招商的同时,加快专业招商、重点招商力度,加快成立招商队伍。围绕全区产业规划和布局,全面招引产业链项目、高端项目,推荐优势项目向开发区等优势平台集聚。 三、镇村同治提升环境。 统筹人居环境、乡村文明、城镇建设三个方面,全力营造新时代文明新乡村。 一是加强人居环境整治力度。常态化开展人居环境整治行动,继续加大对各村环境卫生脏乱差,“三大堆”,“牛皮癣”乱喷涂,小广告乱贴等突出问题的整治力度。着力解决农村垃圾清运不及时不彻底、处置不规范等问题。 二是持续推进镇村文明创建。规范道路、市场、店外秩序,加大文明创建宣传力度,加快推进镇驻地环境改善。切实发挥新时代文明实践所、站作用,积极开展丰富多彩文明实践活动;发挥好红白理事会、道德评议会等制度,让文明新风润泽乡俗。 三是加快美丽宜居乡村建设。倒排工期,保证质量,确保XX社区三期6月底完成分房安置。在过渡安置期间,做好群众工作,定期开展走访慰问,确保群众过渡安置期间住房安全和生活保障。
同志们:这次会议是市委市政主要领导亲自批示要求、亲自安排部署,组织召开的一次十分重要的会议。主要任务是:传达贯彻第**次全国信访工作会议和省委常委会、省政府常务会对信访工作的部署要求及全省信访工作会议和省信访工作联席会议**年第**次全体(扩大)会议精神,专题对**文博会,特别是2023年全国“两会”信访安全保障工作进行安排部署。刚才,会议传达学习了中央和省上相关会议精神,宣读了省委、省政府主要领导和市委**、市政府**市长的有关批示,通报了今年以来全市信访工作情况,**、**、**的有关负责同志作了工作交流发言,同时会议还印发了《2023年全国“两会”期间全市信访安全保障工作方案》,交办了省市两级摸排的涉访重点人员,请大家认真学习领会、切实抓好贯彻落实。下面,我就做好当前和今后一个时期,特别是2023年全国“两会”信访安全保障工作,强调两点意见。一、以最高的政治站位,充分认识做好当前信访工作的极端重要性和紧迫性
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。